On the lines $AB$ are located $2009$ different points that do not belong to the segment $[AB]$. Prove that the sum of the distances from point $A$ to these points is not equal to the sum of the distances from point $B$ to these points.
2009 Moldova National Olympiad
Triangle $ABC$ with $AB = 10$ cm ¸and $\angle C= 15^o$, is right at $B$. Point $D \in (AC)$ is the foot of the altitude taken from $B$. Find the distance from point $D$ to the line $AB$.
The circle $C_1$ of center $O$ and the circle $C_2$ intersect at points $A$ and $B$, so that point $O$ lies on circle $C_2$. The lines $d$ and $e$ are tangent at point $A$ to the circles $C_1$ and $C_2$ respectively. If the line $e$ intersects the circle $C_1$ at point $D$, prove that the lines $BD$ and $d$ are parallel.
Prove that a right triangle has an angle equal to $30^o$ if and only if the center of the circle inscribed in this triangle is located on the perpendicular bisector of the median taken from the vertex of the right angle of the triangle.
Let $ABC$ be an equilateral triangle. The points $M$ and $K$ are located in different half-planes with respect to line $BC$, so that the point $M \in (AB)$ ¸and the triangle $MKC$ is equilateral. Prove that the lines $AC$ and $BK$ are parallel.
A side of an arbitrary triangle has a length greater than $1$. Prove that the given triangle it can be cut into at least $2$ triangles, so that each of them has a side of length equal to $1$.
Let the triangle $ABC$ be with $| AB | > | AC |$. Point M is the midpoint of the side $[BC]$, and point $I$ is the center of the circle inscribed in the triangle ABC such that the relation $| AI | = | MI |$. Prove that points $A, B, M, I$ are located on the same circle.
Let the isosceles triangle $ABC$ with $| AB | = | AC |$. The point $M$ is the midpoint of the base $[BC]$, the point $N$ is the orthogonal projection of the point $M$ on the line $AC$, and the point $P$ is located on the segment $(MC)$ such that $| MP | = | P C | \sin^2 C$. Prove that the lines $AP$ and $BN$ are perpendicular.
Calculate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{cos(x)^7}{e^x+1} dx$.
Find all pairs $(a,b)$ of real numbers, so that $\sin(2009x)+\sin(ax)+\sin(bx)=0$ holds for any $x\in \mathbf {R}$.