In a simple graph with 300 vertices no two vertices of the same degree are adjacent (boo hoo hoo). What is the maximal possible number of edges in such a graph?
2023 Serbia Team Selection Test
1 - Day
A circle centered at $A$ intersects sides $AC$ and $AB$ of $\triangle ABC$ at $E$ and $F$, and the circumcircle of $\triangle ABC$ at $X$ and $Y$. Let $D$ be the point on $BC$ such that $AD$, $BE$, $CF$ concur. Let $P=XE\cap YF$ and $Q=XF\cap YE$. Prove that the foot of the perpendicular from $D$ to $EF$ lies on $PQ$.
The positive integers are partitioned into 2 sequences $a_1<a_2<\dots$ and $b_1<b_2<\dots$ such that $b_n=a_n+n$ for every positive integer $n$. Show that $a_n+b_n=a_{b_n}$.
2 - Day
Let $p$ be a prime and $P\in \mathbb{R}[x]$ be a polynomial of degree less than $p-1$ such that $\lvert P(1)\rvert=\lvert P(2)\rvert=\ldots=\lvert P(p)\rvert$. Prove that $P$ is constant.
For positive integers $a$ and $b$, define \[a!_b=\prod_{1\le i\le a\atop i \equiv a \mod b} i\] Let $p$ be a prime and $n>3$ a positive integer. Show that there exist at least 2 different positive integers $t$ such that $1<t<p^n$ and $t!_p\equiv 1\pmod {p^n}$.
There are $n^2$ segments in the plane (read walls), no two of which are parallel or intersecting. Prove that there are at least $n$ points in the plane such that no two of them see each other (meaning there is a wall separating them).