2023 Iran Team Selection Test

Exam 1

1

Suppose that $n\ge3$ is a natural number. Find the maximum value $k$ such that there are real numbers $a_1,a_2,...,a_n \in [0,1)$ (not necessarily distinct) that for every natural number like $j \le k$ , sum of some $a_i$-s is $j$. Proposed by Navid Safaei

2

$ABCD$ is cyclic quadrilateral and $O$ is the center of its circumcircle. Suppose that $AD \cap BC = E$ and $AC \cap BD = F$. Circle $\omega$ is tanget to line $AC$ and $BD$. $PQ$ is a diameter of $\omega$ that $F$ is orthocenter of $EPQ$. Prove that line $OE$ is passing through center of $\omega$ Proposed by Mahdi Etesami Fard

3

Arman, starting from a number, calculates the sum of the cubes of the digits of that number, and again calculates the sum of the cubes of the digits of the resulting number and continues the same process. Arman calls a number $Good$ if it reaches $1$ after performing a number of steps. Prove that there is an arithmetic progression of length $1402$ of good numbers. Proposed by Navid Safaei

4

The game of Hive is played on a regular hexagonal grid (as shown in the figure) by 3 players. The grid consists of $k$ layers (where $k$ is a natural number) surrounding a regular hexagon, with each layer constructed around the previous layer. The figure below shows a grid with 2 layers. The players, Ali, Shayan, and Sajad, take turns playing the game. In each turn, a player places a tile, similar to the one shown in the figure, on the empty cells of the grid (rotation of the tile is also allowed). The first player who is unable to place a tile on the grid loses the game. Prove that two players can collaborate in such a way that the third player always loses. Proposed by Pouria Mahmoudkhan Shirazi.

5

Suppose that $n\ge2$ and $a_1,a_2,...,a_n$ are natural numbers that $ (a_1,a_2,...,a_n)=1$. Find all strictly increasing function $f: \mathbb{Z} \to \mathbb{R} $ that: $$ \forall x_1,x_2,...,x_n \in \mathbb{Z} : f(\sum_{i=1}^{n} {x_ia_i}) = \sum_{i=1}^{n} {f(x_ia_i})$$ Proposed by Navid Safaei and Ali Mirzaei

6

$ABC$ is an acute triangle with orthocenter $H$. Point $P$ is in triangle $BHC$ that $\angle HPC = 3 \angle HBC $ and $\angle HPB =3 \angle HCB $. Reflection of point $P$ through $BH,CH$ is $X,Y$. if $S$ is the center of circumcircle of $AXY$ , Prove that: $$\angle BAS = \angle CAP$$ Proposed by Pouria Mahmoudkhan Shirazi

Exam 2

1

Suppose that $d(n)$ is the number of positive divisors of natural number $n$. Prove that there is a natural number $n$ such that $$ \forall i\in \mathbb{N} , i \le 1402: \frac{d(n)}{d(n \pm i)} >1401 $$ Proposed by Navid Safaei and Mohammadamin Sharifi

2

Suppose $\frac{1}{2} < s < 1$ . An insect flying on $[0,1]$ . If it is on point $a$ , it jump into point $ a\times s$ or $(a-1) \times s +1$ . For every real number $0 \le c \le 1$, Prove that insect can jump that after some jumps , it has a distance less than $\frac {1}{1402}$ from point $c$. Proposed by Navid Safaei

3

Find all function $ f: \mathbb{R}^{+} \to \mathbb{R}^{+}$ such that for every three real positive number $x,y,z$ : $$ x+f(y) , f(f(y)) + z , f(f(z))+f(x) $$ are length of three sides of a triangle and for every postive number $p$ , there is a triangle with these sides and perimeter $p$. Proposed by Amirhossein Zolfaghari

4

line $l$ through the point $A$ from triangle $ABC$ . Point $X$ is on line $l$.${\omega}_b$ and ${\omega}_c$ are circles that through points $X,A$ and respectively tanget to $AB$ adn $AC$. tangets from $B,C$ respectively to ${\omega}_b$ and ${\omega}_c$ meet them in $Y,Z$. Prove that by changing $X$, the circumcircle of the circle $XYZ$ passes through two fixed points. Proposed by Ali Zamani

5

Find all injective $f:\mathbb{Z}\ge0 \to \mathbb{Z}\ge0 $ that for every natural number $n$ and real numbers $a_0,a_1,...,a_n$ (not everyone equal to $0$), polynomial $\sum_{i=0}^{n}{a_i x^i}$ have real root if and only if $\sum_{i=0}^{n}{a_i x^{f(i)}}$ have real root. Proposed by Hesam Rajabzadeh

6

Suppose that we have $2n$ non-empty subset of $ \big\{0,1,2,...,2n-1\big\} $ that sum of the elements of these subsets is $ \binom{2n+1}{2}$ . Prove that we can choose one element from every subset that some of them is $ \binom{2n}{2}$ Proposed by Morteza Saghafian and Afrouz Jabalameli