2015 Argentina National Olympiad

Level 3

Day 1

1

Express the sum of $99$ terms$$\frac{1\cdot 4}{2\cdot 5}+\frac{2\cdot 7}{5\cdot 8}+\ldots +\frac{k(3k+1 )}{(3k-1)(3k+2)}+\ldots +\frac{99\cdot 298}{296\cdot 299}$$as an irreducible fraction.

2

Find all pairs of natural numbers $a,b$ , with $a\ne b$ , such that $a+b$ and $ab+1$ are powers of $2$.

3

Consider the points $O = (0,0), A = (- 2,0)$ and $B = (0,2)$ in the coordinate plane. Let $E$ and $F$ be the midpoints of $OA$ and $OB$ respectively. We rotate the triangle $OEF$ with a center in $O$ clockwise until we obtain the triangle $OE'F'$ and, for each rotated position, let $P = (x, y)$ be the intersection of the lines $AE'$ and $BF'$. Find the maximum possible value of the $y$-coordinate of $P$.

Day 2

4

An segment $S$ of length $50$ is covered by several segments of length $1$ , all of them contained in $S$. If any of these unit segments were removed, $S$ would no longer be completely covered. Find the maximum number of unit segments with this property. Clarification: Assume that the segments include their endpoints.

5

Find all prime numbers $p$ such that $p^3-4p+9$ is a perfect square.

6

Let $S$ the set of natural numbers from $1$ up to $1001$ , $S=\{1,2,...,1001\}$. Lisandro thinks of a number $N$ of $S$ , and Carla has to find out that number with the following procedure. She gives Lisandro a list of subsets of $S$, Lisandro reads it and tells Carla how many subsets of her list contain $N$ . If Carla wishes, she can repeat the same thing with a second list, and then with a third, but no more than $3$ are allowed. What is the smallest total number of subsets that allow Carla to find $N$ for sure?