2023 China National Olympiad

Day 1 (December 29th)

1

Define the sequences $(a_n),(b_n)$ by \begin{align*} & a_n, b_n > 0, \forall n\in\mathbb{N_+} \\ & a_{n+1} = a_n - \frac{1}{1+\sum_{i=1}^n\frac{1}{a_i}} \\ & b_{n+1} = b_n + \frac{1}{1+\sum_{i=1}^n\frac{1}{b_i}} \end{align*}1) If $a_{100}b_{100} = a_{101}b_{101}$, find the value of $a_1-b_1$; 2) If $a_{100} = b_{99}$, determine which is larger between $a_{100}+b_{100}$ and $a_{101}+b_{101}$.

2

Let $\triangle ABC$ be an equilateral triangle of side length 1. Let $D,E,F$ be points on $BC,AC,AB$ respectively, such that $\frac{DE}{20} = \frac{EF}{22} = \frac{FD}{38}$. Let $X,Y,Z$ be on lines $BC,CA,AB$ respectively, such that $XY\perp DE, YZ\perp EF, ZX\perp FD$. Find all possible values of $\frac{1}{[DEF]} + \frac{1}{[XYZ]}$.

3

Given positive integer $m,n$, color the points of the regular $(2m+2n)$-gon in black and white, $2m$ in black and $2n$ in white. The coloring distance $d(B,C) $ of two black points $B,C$ is defined as the smaller number of white points in the two paths linking the two black points. The coloring distance $d(W,X) $ of two white points $W,X$ is defined as the smaller number of black points in the two paths linking the two white points. We define the matching of black points $\mathcal{B}$ : label the $2m$ black points with $A_1,\cdots,A_m,B_1,\cdots,B_m$ satisfying no $A_iB_i$ intersects inside the gon. We define the matching of white points $\mathcal{W}$ : label the $2n$ white points with $C_1,\cdots,C_n,D_1,\cdots,D_n$ satisfying no $C_iD_i$ intersects inside the gon. We define $P(\mathcal{B})=\sum^m_{i=1}d(A_i,B_i), P(\mathcal{W} )=\sum^n_{j=1}d(C_j,D_j) $. Prove that: $\max_{\mathcal{B}}P(\mathcal{B})=\max_{\mathcal{W}}P(\mathcal{W})$

Day 2 (December 30th)

4

Find the minimum positive integer $n\ge 3$, such that there exist $n$ points $A_1,A_2,\cdots, A_n$ satisfying no three points are collinear and for any $1\le i\le n$, there exist $1\le j \le n (j\neq i)$, segment $A_jA_{j+1}$ pass through the midpoint of segment $A_iA_{i+1}$, where $A_{n+1}=A_1$

5

Prove that there exist $C>0$, which satisfies the following conclusion: For any infinite positive arithmetic integer sequence $a_1, a_2, a_3,\cdots$, if the greatest common divisor of $a_1$ and $a_2$ is squarefree, then there exists a positive integer $m\le C\cdot {a_2}^2$, such that $a_m$ is squarefree. Note: A positive integer $N$ is squarefree if it is not divisible by any square number greater than $1$. Proposed by Qu Zhenhua

6

There are $n(n\ge 8)$ airports, some of which have one-way direct routes between them. For any two airports $a$ and $b$, there is at most one one-way direct route from $a$ to $b$ (there may be both one-way direct routes from $a$ to $b$ and from $b$ to $a$). For any set $A$ composed of airports $(1\le | A| \le n-1)$, there are at least $4\cdot \min \{|A|,n-|A| \}$ one-way direct routes from the airport in $A$ to the airport not in $A$. Prove that: For any airport $x$, we can start from $x$ and return to the airport by no more than $\sqrt{2n}$ one-way direct routes.