Find all triples of primes $(p, q, r)$ such that $p^q=2021+r^3$.
2021 Nigerian MO Round 3
Let $B, C, D, E$ be four pairwise distinct collinear points and let $A$ be a point not on ine $BC$. Now, let the circumcircle of $\triangle ABC$ meet $AD$ and $AE$ respectively again at $F$ and $G$. Show that $DEFG$ is cyclic if and only if $AB=AC$.
Find all pairs of natural numbers $(p, n)$ with $p$ prime such that $p^6+p^5+n^3+n=n^5+n^2$.
In the multiplication magic square below, $l, m, n, p, q, r, s, t, u$ are positive integers. The product of any three numbers in any row, column or diagonal is equal to a constant $k$, where $k$ is a number between $11, 000$ and $12, 500$. Find the value of $k$. \begin{tabular}{|l|l|l|} \hline $l$ & $m$ & $n$ \\ \hline $p$ & $q$ & $r$ \\ \hline $s$ & $t$ & $u$ \\ \hline \end{tabular}
Let $f(x)=\frac{P(x)}{Q(x)}$, where $P(x), Q(x)$ are two non-constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ for infinitely many values of $x$. a) Show that $\text{deg}(P)<\text{deg}(Q)$. b) Show that $P'(1)=2Q'(1)-\text{deg}(Q)\cdot Q(1)$. Here, $P'(x)$ denotes the derivative of $P(x)$ as usual.
Let $m \leq n$ be natural numbers. Starting with the product $t=m\cdot (m+1) \cdot (m+2) \cdot \cdots \cdot n$, let $T_{m, n}$ be the sum of products that can be obtained from deleting from $t$ pairs of consecutive integers (this includes $t$ itself). In the case where all the numbers are deleted, we assume the number $1$. For example, $T_{2, 7} = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 + 2 \cdot 3 \cdot 4 \cdot 5 + 2 \cdot 3 \cdot 4 \cdot 7 + 2 \cdot 3 \cdot 6 \cdot 7 + 2 \cdot 5 \cdot 6 \cdot 7 + 4 \cdot 5 \cdot 6 \cdot 7 + 2 \cdot 3 + 2 \cdot 5 + 2 \cdot 7 + 4 \cdot 7 + 6 \cdot 7 + 1 = 5040 + 120 + 168 + 252 + 420 + 840 + 6 + 10 + 14 + 20 + 28 + 42 + 1 = 6961$. Taking $T_{n+1, n} = 1$. Show that $T_{m, n+1}=T_{m, k-1} \cdot T_{k+2, n+1} + T_{m, k} \cdot T_{k+1, n+1}$ for all $1 \leq m \leq k \leq n$.