Let $r > 0$ be a real number. All the interior points of the disc $D(r)$ of radius $r$ are colored with one of two colors, red or blue. If $r > \frac{\pi}{\sqrt{3}}$, show that we can find two points $A$ and $B$ in the interior of the disc such that $AB = \pi$ and $A,B$ have the same color Does the conclusion in (a) hold if $r > \frac{\pi}{2}$? Proposed by S Muralidharan
India EGMO 2023 TST
Day 1
Alice has an integer $N > 1$ on the blackboard. Each minute, she deletes the current number $x$ on the blackboard and writes $2x+1$ if $x$ is not the cube of an integer, or the cube root of $x$ otherwise. Prove that at some point of time, she writes a number larger than $10^{100}$. Proposed by Anant Mudgal and Rohan Goyal
Let $N \geqslant 3$ be an integer. In the country of Sibyl, there are $N^2$ towns arranged as the vertices of an $N \times N$ grid, with each pair of towns corresponding to an adjacent pair of vertices on the grid connected by a road. Several automated drones are given the instruction to traverse a rectangular path starting and ending at the same town, following the roads of the country. It turned out that each road was traversed at least once by some drone. Determine the minimum number of drones that must be operating. Proposed by Sutanay Bhattacharya and Anant Mudgal
Day 2
Let $f, g$ be functions $\mathbb{R} \rightarrow \mathbb{R}$ such that for all reals $x,y$, $$f(g(x) + y) = g(x + y)$$Prove that either $f$ is the identity function or $g$ is periodic. Proposed by Pranjal Srivastava
Let $k$ be a positive integer. A sequence of integers $a_1, a_2, \cdots$ is called $k$-pop if the following holds: for every $n \in \mathbb{N}$, $a_n$ is equal to the number of distinct elements in the set $\{a_1, \cdots , a_{n+k} \}$. Determine, as a function of $k$, how many $k$-pop sequences there are. Proposed by Sutanay Bhattacharya
Let $ABC$ be an isosceles triangle with $AB = AC$. Suppose $P,Q,R$ are points on segments $AC, AB, BC$ respectively such that $AP = QB$, $\angle PBC = 90^\circ - \angle BAC$ and $RP = RQ$. Let $O_1, O_2$ be the circumcenters of $\triangle APQ$ and $\triangle CRP$. Prove that $BR = O_1O_2$. Proposed by Atul Shatavart Nadig