Determine all positive integers $n \ge 2$ which have a positive divisor $m | n$ satisfying $$n = d^3 + m^3.$$where $d$ is the smallest divisor of $n$ which is greater than $1$.
2022 Dutch IMO TST
Day 1
Two circles $\Gamma_1$ and $\Gamma_2$are given with centres $O_1$ and $O_2$ and common exterior tangents $\ell_1$ and $\ell_2$. The line $\ell_1$ intersects $\Gamma_1$ in $A$ and $\Gamma_2$ in $B$. Let $X$ be a point on segment $O_1O_2$, not lying on $\Gamma_1$ or $\Gamma_2$. The segment $AX$ intersects $\Gamma_1$ in $Y \ne A$ and the segment $BX$ intersects $\Gamma_2$ in $Z \ne B$. Prove that the line through $Y$ tangent to $\Gamma_1$ and the line through $Z$ tangent to $\Gamma_2$ intersect each other on $\ell_2$.
For real numbers $x$ and $y$ we define $M(x, y)$ to be the maximum of the three numbers $xy$, $(x- 1)(y - 1)$, and $x + y - 2xy$. Determine the smallest possible value of $M(x, y)$ where $x$ and $y$ range over all real numbers satisfying $0 \le x, y \le 1$.
In a sequence $a_1, a_2, . . . , a_{1000}$ consisting of $1000$ distinct numbers a pair $(a_i, a_j )$ with $i < j$ is called ascending if $a_i < a_j$ and descending if $a_i > a_j$ . Determine the largest positive integer $k$ with the property that every sequence of $1000$ distinct numbers has at least $k$ non-overlapping ascending pairs or at least $k$ non-overlapping descending pairs.
Day 2
Consider an acute triangle $ABC$ with $|AB| > |CA| > |BC|$. The vertices $D, E$, and $F$ are the base points of the altitudes from $A, B$, and $C$, respectively. The line through F parallel to $DE$ intersects $BC$ in $M$. The angular bisector of $\angle MF E$ intersects $DE$ in $N$. Prove that $F$ is the circumcentre of $\vartriangle DMN$ if and only if $B$ is the circumcentre of $\vartriangle FMN$.
Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x.$ Let $\lambda \geq 1$ be a real number and $n$ be a positive integer with the property that $\lfloor \lambda^{n+1}\rfloor, \lfloor \lambda^{n+2}\rfloor ,\cdots, \lfloor \lambda^{4n}\rfloor$ are all perfect squares$.$ Prove that $\lfloor \lambda \rfloor$ is a perfect square$.$
There are $15$ lights on the ceiling of a room, numbered from $1$ to $15$. All lights are turned off. In another room, there are $15$ switches: a switch for lights $1$ and $2$, a switch for lights $2$ and $3$, a switch for lights $3$ en $4$, etcetera, including a sqitch for lights $15$ and $1$. When the switch for such a pair of lights is turned, both of the lights change their state (from on to off, or vice versa). The switches are put in a random order and all look identical. Raymond wants to find out which switch belongs which pair of lights. From the room with the switches, he cannot see the lights. He can, however, flip a number of switches, and then go to the other room to see which lights are turned on. He can do this multiple times. What is the minimum number of visits to the other room that he has to take to determine for each switch with certainty which pair of lights it corresponds to?
Determine all positive integers $d,$ such that there exists an integer $k\geq 3,$ such that One can arrange the numbers $d,2d,\ldots,kd$ in a row, such that the sum of every two consecutive of them is a perfect square.
Day 3
Find all quadruples $(a, b, c, d)$ of non-negative integers such that $ab =2(1 + cd)$ and there exists a non-degenerate triangle with sides of length $a - c$, $b - d$, and $c + d$.
Let $n > 1$ be an integer. There are $n$ boxes in a row, and there are $n + 1$ identical stones. A distribution is a way to distribute the stones over the boxes, in which every stone is in exactly one of the boxes. We say that two of such distributions are a stone’s throw away from each other if we can obtain one distribution from the other by moving exactly one stone from one box to another. The cosiness of a distribution $a$ is defined as the number of distributions that are a stone’s throw away from $a$. Determine the average cosiness of all possible distributions.
Let $n$ be a natural number. An integer $a>2$ is called $n$-decomposable, if $a^n-2^n$ is divisible by all the numbers of the form $a^d+2^d$, where $d\neq n$ is a natural divisor of $n$. Find all composite $n\in \mathbb{N}$, for which there's an $n$-decomposable number.
Let $ABC$ be a triangle with a right angle at $C$. Let $I$ be the incentre of triangle $ABC$, and let $D$ be the foot of the altitude from $C$ to $AB$. The incircle $\omega$ of triangle $ABC$ is tangent to sides $BC$, $CA$, and $AB$ at $A_1$, $B_1$, and $C_1$, respectively. Let $E$ and $F$ be the reflections of $C$ in lines $C_1A_1$ and $C_1B_1$, respectively. Let $K$ and $L$ be the reflections of $D$ in lines $C_1A_1$ and $C_1B_1$, respectively. Prove that the circumcircles of triangles $A_1EI$, $B_1FI$, and $C_1KL$ have a common point.