If $C$ is a set of $n$ points in the plane that has the following property: For each point $P$ of $C$, there are four points of $C$, each one distinct from $P$ , which are the vertices of a square. Find the smallest possible value of $n$.
2015 Peru MO (ONEM)
Level 3
Let $ABCDEF$ be a convex hexagon. The diagonal $AC$ is cut by $BF$ and $BD$ at points $P$ and $Q$, respectively. The diagonal $CE$ is cut by $DB$ and $DF$ at points $R$ and $S$, respectively. The diagonal $EA$ is cut by $FD$ and $FB$ at points $T$ and $U$, respectively. It is known that each of the seven triangles $APB, PBQ, QBC, CRD, DRS, DSE$ and $AUF$ has area $1$. Find the area of the hexagon $ABCDEF$.
Let $a_1, a_2, . . . , a_n$ be positive integers, with $n \ge 2$, such that $$ \lfloor \sqrt{a_1 \cdot a_2\cdot\cdot\cdot a_n} \rfloor = \lfloor \sqrt{a_1} \rfloor \cdot \lfloor \sqrt{a_2} \rfloor \cdot\cdot\cdot \lfloor \sqrt{a_n} \rfloor.$$Prove that at least $n - 1$ of these numbers are perfect squares. Clarification: Given a real number $x$, $\lfloor x\rfloor$ denotes the largest integer that is less than or equal to $x$. For example $\lfloor \sqrt2\rfloor$ and $\lfloor 3\rfloor =3$.
Let $b$ be an odd positive integer. The sequence $a_1, a_2, a_3, a_4$, is definedin the next way: $a_1$ and $a_2$ are positive integers and for all $k \ge 2$, $$a_{k+1}= \begin{cases} \frac{a_k + a_{k-1}}{2} \,\,\, if \,\,\, a_k + a_{k-1} \,\,\, is \,\,\, even \\ \frac{a_k + a_{k-1+b}}{2}\,\,\, if \,\,\, a_k + a_{k-1}\,\,\, is \,\,\,odd\end{cases}$$a) Prove that if $b = 1$, then after a certain term, the sequence will become constant. b) For each $b \ge 3$ (odd), prove that there exist values of $a_1$ and $a_2$ for which the sequence will become constant after a certain term.