Let $(a_n)_{n\geq 1}$ be a sequence for real numbers given by $a_1=1/2$ and for each positive integer $n$ \[ a_{n+1}=\frac{a_n^2}{a_n^2-a_n+1}. \] Prove that for every positive integer $n$ we have $a_1+a_2+\cdots + a_n<1$.
2021 Romania EGMO TST
Day 1
Two circles intersect at points $A\neq B$. A line passing through $A{}$ intersects the circles again at $C$ and $D$. Let $E$ and $F$ be the midpoints of the arcs $\overarc{BC}$ and $\overarc{BD}$ which do not contain $A{}$ and let $M$ be the midpoint of the segment $CD$. Prove that $ME$ and $MF$ are perpendicular.
Let $X$ be a finite set with $n\geqslant 3$ elements and let $A_1,A_2,\ldots, A_p$ be $3$-element subsets of $X$ satisfying $|A_i\cap A_j|\leqslant 1$ for all indices $i,j$. Show that there exists a subset $A{}$ of $X$ so that none of $A_1,A_2,\ldots, A_p$ is included in $A{}$ and $|A|\geqslant\lfloor\sqrt{2n}\rfloor$.
Consider a coordinate system in the plane, with the origin $O$. We call a lattice point $A{}$ hidden if the open segment $OA$ contains at least one lattice point. Prove that for any positive integer $n$ there exists a square of side-length $n$ such that any lattice point lying in its interior or on its boundary is hidden.
Day 2
Let $x>1$ be a real number which is not an integer. For each $n\in\mathbb{N}$, let $a_n=\lfloor x^{n+1}\rfloor - x\lfloor x^n\rfloor$. Prove that the sequence $(a_n)$ is not periodic.
Through the midpoint $M$ of the side $BC$ of the triangle $ABC$ passes a line which intersects the rays $AB$ and $AC$ at $D$ and $E$, respectively, such that $AD=AE$. Let $F$ be the foot of the perpendicular from $A$ onto $BC$ and $P{}$ the circumcenter of triangle $ADE$. Prove that $PF=PM$.
Determine all pairs of positive integers $(m,n)$ for which an $m\times n$ rectangle can be tiled with (possibly rotated) L-shaped trominos.
Determine all non-negative integers $n$ for which there exist two relatively prime non-negative integers $x$ and $y$ and a positive integer $k\geqslant 2$ such that $3^n=x^k+y^k$.