2022 Yasinsky Geometry Olympiad

grades VIII-IX

1

An angle whose degree measure is equal to $108^o$ is given . Describe how with help compass and ruler can divide this angle into three equal parts. (Yukhim Rabinovych)

2

In the triangle $ABC$, angle $C$ is four times smaller than each of the other two angle The altitude $AK$ and the angle bisector $AL$ are drawn from the vertex of the angle $A$. It is known that the length of $AL$ is equal to $\ell$. Find the length of the segment $LK$. (Gryhoriy Filippovskyi)

3

In an isosceles right triangle $ABC$ with a right angle $C$, point $M$ is the midpoint of leg $AC$. At the perpendicular bisector of $AC$, point $D$ was chosen such that $\angle CDM = 30^o$, and $D$ and $B$ lie on different sides of $AC$. Find the angle $\angle ABD$. (Volodymyr Petruk)

4

Let $BM$ be the median of triangle $ABC$. On the extension of $MB$ beyond $B$, the point $K$ is chosen so that $BK =\frac12 AC$. Prove that if $\angle AMB=60^o$, then $AK=BC$. (Mykhailo Standenko)

5

Point $X$ is chosen on side $AD$ of square $ABCD$. The inscribed circle of triangle $ABX$ touches $AX$, $BX$, and $AB$ at points $N$, $K$, and $F$, respectively. Prove that the ray $NK$ passes through the center $O$ of the square $ABCD$. (Dmytro Shvetsov)

6

Let $AD$, $BE$ and $CF$ be the diameters of the circle circumscribed around the acute angle triangle $ABC$. Point $N$ is the midpoint of the arc $CAD$, and point $M$ is the midpoint of arc $BAD$. Prove that the lines $EN$ and $MF$ intersect at the angle bisector of $\angle BAC$. (Matvii Kurskyi)

grades VIII-IX advanced

same as VIII-IX p4 - 1

ame as VIII-IX p5 - 2

3

Reconstruct the triangle$ ABC$, in which $\angle B - \angle C = 90^o$ , by the orthocenter $H$ and points $M_1$ and $L_1$ the feet of the median and angle bisector drawn from vertex $A$, respectively. (Gryhoriy Filippovskyi)

4

Let $X$ be an arbitrary point on side $BC$ of triangle $ABC$. Triangle $T$ is formed by the angle bisectors of the angles $\angle ABC$, $\angle ACB$ and $\angle AXC$. Prove that the circle circumscribed around the triangle $T$, passes through the vertex $A$. (Dmytro Prokopenko)

5

In an acute-angled triangle $ABC$, point $I$ is the incenter, $H$ is the orthocenter, $O$ is the center of the circumscribed circle, $T$ and $K$ are the touchpoints of the $A$-excircle and incircle with side $BC$ respectively. It turned out that the segment $TI$ is passing through the point $O$. Prove that $HK$ is the angle bisector of $\angle BHC$. (Matvii Kurskyi)

6

Let $s$ be an arbitrary straight line passing through the incenter $I$ of the triangle $ABC$ . Line $s$ intersects lines $AB$ and $BC$ at points $D$ and $E$, respectively. Points $P$ and $Q$ are the centers of the circumscribed circles of triangles $DAI$ and $CEI$, respectively, and point $F$ is the second intersection point of these circles. Prove that the circumcircle of the triangle $PQF$ is always passes through a fixed point on the plane regardless of the position of the straight line $s$. (Matvii Kurskyi)

grades X-XI

1

In the triangle $ABC$, the median $AM$ is extended to the intersection with the circumscribed circle at point $D$. It is known that $AB = 2AM$ and $AD = 4AM$. Find the angles of the triangle $ABC$. (Gryhoriy Filippovskyi)

2

On the sides $AB$, $BC$, $CD$, $DA$ of the square $ABCD$ points $P, Q, R, T$ are chosen such that $$\frac{AP}{PB}=\frac{BQ}{QC}=\frac{CR}{RD}=\frac{DT}{TA}=\frac12.$$The segments $AR$, $BT$, $CP$, $DQ$ in the intersection form the quadrilateral $KLMN$ (see figure). a) Prove that $KLMN$ is a square. b) Find the ratio of the areas of the squares $KLMN$ and $ABCD$. (Alexander Shkolny)

3

With an unmarked ruler only, reconstruct the trapezoid $ABCD$ ($AD \parallel BC$) given the vertices $A$ and $B$, the intersection point $O$ of the diagonals of the trapezoid and the midpoint $M$ of the base $AD$. (Yukhim Rabinovych)

4

The intersection point $I$ of the angles bisectors of the triangle $ABC$ has reflections the points $P,Q,T$ wrt the triangle's sides . It turned out that the circle $s$ circumscribed around of the triangle $PQT$ , passes through the vertex $A$. Find the radius of the circumscribed circle of triangle $ABC$ if $BC = a$. (Gryhoriy Filippovskyi)

5

Let $ABC$ be a right triangle with leg $CB = 2$ and hypotenuse $AB= 4$. Point $K$ is chosen on the hypotenuse $AB$, and point $L$ is chosen on the leg $AC$. a) Describe and justify how to construct such points $K$ and $ L$ so that the sum of the distances $CK+KL$ is the smallest possible. b) Find the smallest possible value of $CK+KL$. (Olexii Panasenko)

6

In the triangle$ABC$ ($AC > AB$), point $N$ is the midpoint of $BC$, and $I$ is the intersection point of the angle bisectors. Ray $AI$ intersects the circumscribed circle of triangle $ABC$ at point $W$, a perpendicular $WF$ is drawn from it on side $AC$. Find the length of the segment $CF$ , if the radius of the circle inscribed in the triangle $ABC$ is equal to $r$ and $\angle INB = 45^o$. (Gryhoriy Filippovskyi)

grades X-XI advanced

1

From the triangle $ABC$, are gicen only the incenter $I$, the touchpoint $K$ of the inscribed circle with the side $AB$, as well as the center $I_a$ of the exscribed circle, that touches the side $BC$ . Construct a triangle equal in size to triangle $ABC$. (Gryhoriy Filippovskyi)

2

In the acute triangle $ABC$, the sum of the distances from the vertices $B$ and $C$ to of the orthocenter $H$ is equal to $4r,$ where $r$ is the radius of the circle inscribed in this triangle. Find the perimeter of triangle $ABC$ if it is known that $BC=a$. (Gryhoriy Filippovskyi)

3

Given a triangle $ABC$, in which the medians $BE$ and $CF$ are perpendicular. Let $M$ is the intersection point of the medians of this triangle, and $L$ is its Lemoine point (the intersection point of lines symmetrical to the medians with respect to the bisectors of the corresponding angles). Prove that $ML \perp BC$. (Mykhailo Sydorenko)

4

In the triangle $ABC$ the relationship $AB+AC = 2BC$ holds. Let $I$ and $M$ be the incenter and intersection point of the medians of triangle $ABC$ respectively, $AL$ its angle bisector, and point $P$ the orthocenter of triangle $BIC$. Prove that the points $L, M, P$ lie on a straight line. (Matvii Kurskyi)

5

Let $X$ be an arbitrary point on side $BC$ of triangle ABC. Triangle $T$ formed by the bisectors of the angles $ABC$, $ACB$ and $AXC$. Prove that: a) the circumscribed circle of the triangle $T$ passes through the vertex $A$. b) the orthocenter of triangle $T$ lies on line $BC$. (Dmytro Prokopenko)

6

Let $\omega$ be the circumscribed circle of the triangle $ABC$, in which $AC< AB$, $K$ is the center of the arc $BAC$, $KW$ is the diameter of the circle $\omega$. The circle $\gamma$ is inscribed in the curvilinear triangle formed by the segments $BC$, $AB$ and the arc $AC$ of the circle $\omega$. It turned out that circle $\gamma$ also touches $KW$ at point $F$. Let $I$ be the center of the triangle $ABC$, $M$ is the midpoint of the smaller arc $AK$, and $T$ is the second intersection point of $MI$ with the circle $\omega$. Prove that lines $FI$, $TW$ and $BC$ intersect at one point. (Mykhailo Sydorenko)