2022 Greece JBMO TST

1

Find all positive integers $a, b, c$ such that $ab + 1$, $bc + 1$, and $ca + 1$ are all equal to factorials of some positive integers. Proposed by Nikola Velov, Macedonia

2

Let $ABC$ be an acute triangle with $AB<AC < BC$, inscirbed in circle $\Gamma_1$, with center $O$. Circle $\Gamma_2$, with center point $A$ and radius $AC$ intersects $BC$ at point $D$ and the circle $\Gamma_1$ at point $E$. Line $AD$ intersects circle $\Gamma_1$ at point $F$. The circumscribed circle $\Gamma_3$ of triangle $DEF$, intersects $BC$ at point $G$. Prove that: a) Point $B$ is the center of circle $\Gamma_3$ b) Circumscribed circle of triangle $CEG$ is tangent to $AC$.

3

The real numbers $x,y,z$ are such that $x+y+z=4$ and $0 \le x,y,z \le 2$. Find the minimun value of the expression $$A=\sqrt{2+x}+\sqrt{2+y}+\sqrt{2+z}+\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}$$.

4

Let $n$ be a positive integer. We are given a $3n \times 3n$ board whose unit squares are colored in black and white in such way that starting with the top left square, every third diagonal is colored in black and the rest of the board is in white. In one move, one can take a $2 \times 2$ square and change the color of all its squares in such way that white squares become orange, orange ones become black and black ones become white. The goals is, using a finite number of moves, we can make all the squares which were initially black white, and all squares which were initially white black. Prove that: a) We cannot achieve the goal for $n=3$. a) We can achieve the goal for $n=2$. .2022 Greece JBMO TST p4 version