A natural number of five digits is called Ecuadorian if it satisfies the following conditions: $\bullet$ All its digits are different. $\bullet$ The digit on the far left is equal to the sum of the other four digits. Example: $91350$ is an Ecuadorian number since $9 = 1 + 3 + 5 + 0$, but $54210$ is not since $5 \ne 4 + 2 + 1 + 0$. Find how many Ecuadorian numbers exist.
2016 Ecuador Juniors
Day 1
Prove that there are no positive integers $x, y$ such that: $(x + 1)^2 + (x + 2)^2 +...+ (x + 9)^2 = y^2$
Let $P_1P_2 . . . P_{2016 }$ be a cyclic polygon of $2016$ sides. Let $K$ be a point inside the polygon and let $M$ be the midpoint of the segment $P_{1000}P_{2000}$. Knowing that $KP_1 = KP_{2011} = 2016$ and $KM$ is perpendicular to $P_{1000}P_{2000}$, find the length of segment $KP_{2016}$.
Day 2
Two sums, each consisting of $n$ addends , are shown below: $S = 1 + 2 + 3 + 4 + ...$ $T = 100 + 98 + 96 + 94 +...$ . For what value of $n$ is it true that $S = T$ ?
In the parallelogram $ABCD$, a line through $C$ intersects the diagonal $BD$ at $E$ and $AB$ at $F$. If $F$ is the midpoint of $AB$ and the area of $\vartriangle BEC$ is $100$, find the area of the quadrilateral $AFED$.
Determine the number of positive integers $N = \overline{abcd}$, with $a, b, c, d$ nonzero digits, which satisfy $(2a -1) (2b -1) (2c- 1) (2d - 1) = 2abcd -1$.