2020 Bosnia and Herzegovina Junior BMO TST

1

Determine all four-digit numbers $\overline{abcd}$ which are perfect squares and for which the equality holds: $\overline{ab}=3 \cdot \overline{cd} + 1$.

2

A board $n \times n$ is divided into $n^2$ unit squares and a number is written in each unit square. Such a board is called interesting if the following conditions hold: $\circ$ In all unit squares below the main diagonal, the number $0$ is written; $\circ$ Positive integers are written in all other unit squares. $\circ$ When we look at the sums in all $n$ rows, and the sums in all $n$ columns, those $2n$ numbers are actually the numbers $1,2,...,2n$ (not necessarily in that order). $a)$ Determine the largest number that can appear in a $6 \times 6$ interesting board. $b)$ Prove that there is no interesting board of dimensions $7\times 7$.

3

The angle bisector of $\angle ABC$ of triangle $ABC$ ($AB>BC$) cuts the circumcircle of that triangle in $K$. The foot of the perpendicular from $K$ to $AB$ is $N$, and $P$ is the midpoint of $BN$. The line through $P$ parallel to $BC$ cuts line $BK$ in $T$. Prove that the line $NT$ passes through the midpoint of $AC$.

4

Determine the largest positive integer $n$ such that the following statement holds: If $a_1,a_2,a_3,a_4,a_5,a_6$ are six distinct positive integers less than or equal to $n$, then there exist $3$ distinct positive integers ,from these six, say $a,b,c$ s.t. $ab>c,bc>a,ca>b$.