Convex quadrilateral $ABCD$ is inscribed in circle $w.$Rays $AB$ and $DC$ intersect at $K.\ L$ is chosen on the diagonal $BD$ so that $\angle BAC= \angle DAL.\ M$ is chosen on the segment $KL$ so that $CM \mid\mid BD.$ Prove that line $BM$ touches $w.$ (Kungozhin M.)
2022 Silk Road
Distinct positive integers $A$ and $B$ are given$.$ Prove that there exist infinitely many positive integers that can be represented both as $x_{1}^2+Ay_{1}^2$ for some positive coprime integers $x_{1}$ and $y_{1},$ and as $x_{2}^2+By_{2}^2$ for some positive coprime integers $x_{2}$ and $y_{2}.$ (Golovanov A.S.)
In an infinite sequence $\{\alpha\}, \{\alpha^2\}, \{\alpha^3\}, \cdots $ there are finitely many distinct values$.$ Show that $\alpha$ is an integer$. (\{x\}$ denotes the fractional part of$ x.)$ (Golovanov A.S.)
In a language$,$ an alphabet with $25$ letters is used$;$ words are exactly all sequences of $($ not necessarily different $)$ letters of length $17.$ Two ends of a paper strip are glued so that the strip forms a ring$;$ the strip bears a sequence of $5^{18}$ letters$.$ Say that a word is singular if one can cut a piece bearing exactly that word from the strip$,$ but one cannot cut out two such non-overlapping pieces$.$ It is known that one can cut out $5^{16}$ non-overlapping pieces each containing the same word$.$ Determine the largest possible number of singular words$.$ (Bogdanov I.)