Let $a$ and $b$ be positive real numbers such that $a+b = 1$. Prove that $$\frac12 \le \frac{a^3+b^3}{a^2+b^2} \le 1$$
2021 Regional Olympiad of Mexico West
Prove that in every $16$-digit number there is a chain of one or more consecutive digits such that the product of those digits is a perfect square. For example, if the original number is $7862328578632785$ we can take the digits $6$, $2$ and $3$ whose product is $6^2$ (note that these appear consecutively in the number).
The sequence of real numbers $a_1, a_2, a_3, ...$ is defined as follows: $a_1 = 2019$, $a_2 = 2020$, $a_3 = 2021$ and for all $n \ge 1$ $$a_{n+3} = 5a^6_{n+2} + 3a^3_{n+1} + a^2_n.$$Show that this sequence does not contain numbers of the form $m^6$ where $m$ is a positive integer.
Some numbers from $1$ to $100$ are painted red so that the following two conditions are met: $\bullet$ The number $1 $ is painted red. $\bullet$ If the numbers other than $a$ and $b$ are painted red then no number between $a$ and $b$ divides the number $ab$. What is the maximum number of numbers that can be painted red?
Let $ABC$ be a triangle such that $AC$ is its shortest side. A point $P$ is inside it and satisfies that $BP = AC$. Let $R$ be the midpoint of $BC$ and let $M$ be the midpoint of $AP$. Let $E$ be the intersection of $BP$ and $AC$. Prove that the bisector of angle $\angle BE A$ is perpendicular to segment $MR$.
Let $n$ be an integer greater than $3$. Show that it is possible to divide a square into $n^2 + 1$ or more disjointed rectangles and with sides parallel to those of the square so that any line parallel to one of the sides intersects at most the interior of $n$ rectangles. Note: We say that two rectangles are disjointed if they do not intersect or only intersect at their perimeters.