2020 Regional Olympiad of Mexico Northeast

1

Let $a_1=2020$ and let $a_{n+1}=\sqrt{2020+a_n}$ for $n\ge 1$. How much is $\left\lfloor a_{2020}\right\rfloor$? Note: $\lfloor x\rfloor$ denotes the integer part of a number, that is that is, the immediate integer less than $x$. For example, $\lfloor 2.71\rfloor=2$ and $\lfloor \pi\rfloor=3$.

2

Let $A$, $B$, $C$ and $D$ be points on the same circumference with $\angle BCD=90^\circ$. Let $P$ and $Q$ be the projections of $A$ onto $BD$ and $CD$, respectively. Prove that $PQ$ cuts the segment $AC$ into equal parts.

3

A permutation of the integers \(2020, 2021,...,2118, 2119\) is a list \(a_1,a_2,a_3,...,a_{100}\) where each one of the numbers appears exactly once. For each permutation we define the partial sums. $s_1=a_1$ $s_2=a_1+a_2$ $s_3=a_1+a_2+a_3$ $...$ $s_{100}=a_1+a_2+...+a_{100}$ How many of these permutations satisfy that none of the numbers \(s_1,...,s_{100}\) is divisible by $3$?

4

Let \(n > 1\) be an integer and \(p\) be a prime. Prove that if \(n|p-1\) and \(p|n^3-1\), then \(4p-3\) is a perfect square.