Let $a,b,c,d$ be real numbers such that $abcd>0$. Prove that:There exists a permutation $x,y,z,w$ of $a,b,c,d$ such that $$2(xy+zw)^2>(x^2+y^2)(z^2+w^2)$$.
2016 China Western Mathematical Olympiad
Day 1
Let $\astrosun O_1$ and $\astrosun O_2$ intersect at $P$ and $Q$, their common external tangent touches $\astrosun O_1$ and $\astrosun O_2$ at $A$ and $B$ respectively. A circle $\Gamma$ passing through $A$ and $B$ intersects $\astrosun O_1$, $\astrosun O_2$ at $D$, $C$. Prove that $\displaystyle \frac{CP}{CQ}=\frac{DP}{DQ}$
Let $n$ and $k$ be integers with $k\leq n-2$. The absolute value of the sum of elements of any $k$-element subset of $\{a_1,a_2,\cdots,a_n\}$ is less than or equal to 1. Show that: If $|a_1|\geq1$, then for any $2\leq i \leq n$, we have: $$|a_1|+|a_i|\leq2$$
For an $n$-tuple of integers, define a transformation to be: $$(a_1,a_2,\cdots,a_{n-1},a_n)\rightarrow (a_1+a_2, a_2+a_3, \cdots, a_{n-1}+a_n, a_n+a_1)$$ Find all ordered pairs of integers $(n,k)$ with $n,k\geq 2$, such that for any $n$-tuple of integers $(a_1,a_2,\cdots,a_{n-1},a_n)$, after a finite number of transformations, every element in the of the $n$-tuple is a multiple of $k$.
Day 2
Prove that there exist infinitely many positive integer triples $(a,b,c)$ such that $a ,b,c$ are pairwise relatively prime ,and $ab+c ,bc+a ,ca+b$ are pairwise relatively prime .
Let $a_1,a_2,\ldots,a_n$ be non-negative real numbers ,$S_k= \sum\limits_{i=1}^{k}a_i $ $(1\le k\le n)$.Prove that$$\sum\limits_{i=1}^{n}\left(a_iS_i\sum\limits_{j=i}^{n}a^2_j\right)\le \sum\limits_{i=1}^{n}\left(a_iS_i\right)^2$$
$ABCD$ is a cyclic quadrilateral, and $\angle BAC = \angle DAC$. $\astrosun I_1$ and $\astrosun I_2$ are the incircles of $\triangle ABD$ and $\triangle ADC$ respectively. Prove that one of the common external tangents of $\astrosun I_1$ and $\astrosun I_2$ is parallel to $BD$
For any given integers $m,n$ such that $2\leq m<n$ and $(m,n)=1$. Determine the smallest positive integer $k$ satisfying the following condition: for any $m$-element subset $I$ of $\{1,2,\cdots,n\}$ if $\sum_{i\in I}i> k$, then there exists a sequence of $n$ real numbers $a_1\leq a_2 \leq \cdots \leq a_n$ such that $$\frac1m\sum_{i\in I} a_i>\frac1n\sum_{i=1}^na_i$$