For any positive integer $n$, we define $S(n)$ to be the sum of its digits in the decimal representation. Prove that for any positive integer $m$, there exists a positive integer $n$ such that $S(n)-S(n^2)>m$.
2021 Peru IMO TST
Day1 -
In an acute triangle $ABC$, its inscribed circle touches the sides $AB,BC$ at the points $C_1,A_1$ respectively. Let $M$ be the midpoint of the side $AC$, $N$ be the midpoint of the arc $ABC$ on the circumcircle of triangle $ABC$, and $P$ be the projection of $M$ on the segment $A_1C_1$. Prove that the points $P,N$ and the incenter $I$ of the triangle $ABC$ lie on the same line.
For any positive integer $n$, we define $$S_n=\sum_{k=1}^n \frac{2^k}{k^2}.$$Prove that there are no polynomials $P,Q$ with real coefficients such that for any positive integer $n$, we have $\frac{S_{n+1}}{S_n}=\frac{P(n)}{Q(n)}$.
2020 IMOSL C1 - P4
Day2 -
Find all positive integers $m$ for which there exist three positive integers $a,b,c$ such that $abcm=1+a^2+b^2+c^2$.
2020 IMOSL C2 - P2
Suppose the function $f:[1,+\infty)\to[1,+\infty)$ satisfies the following two conditions: (i) $f(f(x))=x^2$ for any $x\geq 1$; (ii) $f(x)\leq x^2+2021x$ for any $x\geq 1$. 1. Prove that $x<f(x)<x^2$ for any $x\geq 1$. 2. Prove that there exists a function $f$ satisfies the above two conditions and the following one: (iii) There are no real constants $c$ and $A$, such that $0<c<1$, and $\frac{f(x)}{x^2}<c$ for any $x>A$.
Day 3 -
Suppose positive real numers $x,y,z,w$ satisfy $(x^3+y^3)^4=z^3+w^3$. Prove that $$x^4z+y^4w\geq zw.$$
For any positive integers $a,b,c,n$, we define $$D_n(a,b,c)=\mathrm{gcd}(a+b+c,a^2+b^2+c^2,a^n+b^n+c^n).$$ 1. Prove that if $n$ is a positive integer not divisible by $3$, then for any positive integer $k$, there exist three integers $a,b,c$ such that $\mathrm{gcd}(a,b,c)=1$, and $D_n(a,b,c)>k$. 2. For any positive integer $n$ divisible by $3$, find all values of $D_n(a,b,c)$, where $a,b,c$ are three positive integers such that $\mathrm{gcd}(a,b,c)=1$.
2020 IMOSL G5 - P3