2016 Spain Mathematical Olympiad

Day 1

1

Two real number sequences are guiven, one arithmetic $\left(a_n\right)_{n\in \mathbb {N}}$ and another geometric sequence $\left(g_n\right)_{n\in \mathbb {N}}$ none of them constant. Those sequences verifies $a_1=g_1\neq 0$, $a_2=g_2$ and $a_{10}=g_3$. Find with proof that, for every positive integer $p$, there is a positive integer $m$, such that $g_p=a_m$.

2

Given a positive prime number $p$. Prove that there exist a positive integer $\alpha$ such that $p|\alpha(\alpha-1)+3$, if and only if there exist a positive integer $\beta$ such that $p|\beta(\beta-1)+25$.

3

In the circumscircle of a triangle $ABC$, let $A_1$ be the point diametrically opposed to the vertex $A$. Let $A'$ the intersection point of $AA'$ and $BC$. The perpendicular to the line $AA'$ from $A'$ meets the sides $AB$ and $AC$ at $M$ and $N$, respectively. Prove that the points $A,M,A_1$ and $N$ lie on a circle which has the center on the height from $A$ of the triangle $ABC$.

Day 2

4

Let $m$ be a positive integer and $a$ and $b$ be distinct positive integers strictly greater than $m^2$ and strictly less than $m^2+m$. Find all integers $d$ such that $m^2 < d < m^2+m$ and $d$ divides $ab$.

5

From all possible permutations from $(a_1,a_2,...,a_n)$ from the set $\{1,2,..,n\}$, $n\geq 1$, consider the sets that satisfies the $2(a_1+a_2+...+a_m)$ is divisible by $m$, for every $m=1,2,...,n$. Find the total number of permutations.

6

Let $n\geq 2$ an integer. Find the least value of $\gamma$ such that for any positive real numbers $x_1,x_2,...,x_n$ with $x_1+x_2+...+x_n=1$ and any real $y_1+y_2+...+y_n=1$ and $0\leq y_1,y_2,...,y_n\leq \frac{1}{2}$ the following inequality holds: $$x_1x_2...x_n\leq \gamma \left(x_1y_1+x_2y_2+...+x_ny_n\right)$$