Given an acute triangle $ABC$, mark $3$ points $X, Y, Z$ in the interior of the triangle. Let $X_1, X_2, X_3$ be the projections of $X$ to $BC, CA, AB$ respectively, and define the points $Y_i, Z_i$ similarly for $i=1, 2, 3$. a) Suppose that $X_iY_i<X_iZ_i$ for all $i=1,2,3$, prove that $XY<XZ$. b) Prove that this is not neccesarily true, if triangle $ABC$ is allowed to be obtuse. Proposed by Ivan Chan Kai Chin
2022 Malaysian IMO Team Selection Test
Day 1, April 23, 2022
Let $\mathcal{S}$ be a set of $2023$ points in a plane, and it is known that the distances of any two different points in $S$ are all distinct. Ivan colors the points with $k$ colors such that for every point $P \in \mathcal{S}$, the closest and the furthest point from $P$ in $\mathcal{S}$ also have the same color as $P$. What is the maximum possible value of $k$? Proposed by Ivan Chan Kai Chin
[Redacted as it contains an error] - 3
Day 2, April 24, 2022
Given a positive integer $n$, suppose that $P(x,y)$ is a real polynomial such that \[P(x,y)=\frac{1}{1+x+y} \hspace{0.5cm} \text{for all $x,y\in\{0,1,2,\dots,n\}$} \]What is the minimum degree of $P$? Proposed by Loke Zhi Kin
Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ such that for all prime $p$ the following condition holds: $$p \mid ab + bc + ca \iff p \mid f(a)f(b) + f(b)f(c) + f(c)f(a)$$ Proposed by Anzo Teh Zhao Yang
Given a triangle $ABC$ with $AB=AC$ and circumcenter $O$. Let $D$ and $E$ be midpoints of $AC$ and $AB$ respectively, and let $DE$ intersect $AO$ at $F$. Denote $\omega$ to be the circle $(BOE)$. Let $BD$ intersect $\omega$ again at $X$ and let $AX$ intersect $\omega$ again at $Y$. Suppose the line parallel to $AB$ passing through $O$ meets $CY$ at $Z$. Prove that the lines $FX$ and $BZ$ meet at $\omega$. Proposed by Ivan Chan Kai Chin