Find all $f:\mathbb{Z}\to\mathbb{Z}$ such that \[f\left(\left\lfloor\frac{f(x)+f(y)}{2}\right\rfloor\right)+f(x)=f(f(y))+\left\lfloor\frac{f(x)+f(y)}{2}\right\rfloor\]holds for all $x,y\in\mathbb{Z}$. Proposed by usjl
2022 Taiwan TST Round 1
Quiz 1
Let $n\ge 3$ be a fixed integer. There are $m\ge n+1$ beads on a circular necklace. You wish to paint the beads using $n$ colors, such that among any $n+1$ consecutive beads every color appears at least once. Find the largest value of $m$ for which this task is $\emph{not}$ possible. Carl Schildkraut, USA
Two triangles $ABC$ and $A'B'C'$ are on the plane. It is known that each side length of triangle $ABC$ is not less than $a$, and each side length of triangle $A'B'C'$ is not less than $a'$. Prove that we can always choose two points in the two triangles respectively such that the distance between them is not less than $\sqrt{\dfrac{a^2+a'^2}{3}}$.
Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.
Quiz 2
Let $a_1, a_2, a_3, \ldots$ be a sequence of reals such that there exists $N\in\mathbb{N}$ so that $a_n=1$ for all $n\geq N$, and for all $n\geq 2$ we have \[a_{n}\leq a_{n-1}+2^{-n}a_{2n}.\]Show that $a_k>1-2^{-k}$ for all $k\in\mathbb{N}$. Proposed by usjl
Let $\triangle P_1P_2P_3$ be an equilateral triangle. For each $n\ge 4$, Mingmingsan can set $P_n$ as the circumcenter or orthocenter of $\triangle P_{n-3}P_{n-2}P_{n-1}$. Find all positive integer $n$ such that Mingmingsan has a strategy to make $P_n$ equals to the circumcenter of $\triangle P_1P_2P_3$. Proposed by Li4 and Untro368.
Let $ABCD$ be a parallelogram with $AC=BC.$ A point $P$ is chosen on the extension of ray $AB$ past $B.$ The circumcircle of $ACD$ meets the segment $PD$ again at $Q.$ The circumcircle of triangle $APQ$ meets the segment $PC$ at $R.$ Prove that lines $CD,AQ,BR$ are concurrent.
Show that $n!=a^{n-1}+b^{n-1}+c^{n-1}$ has only finitely many solutions in positive integers. Proposed by Dorlir Ahmeti, Albania
Mock IMO, Day 1
In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$
Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$
For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\]over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$ Proposed by Shahjalal Shohag, Bangladesh
Mock IMO, Day 2
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$. Proposed by Dominik Burek and Tomasz Ciesla, Poland
Let $H$ be the orthocenter of a given triangle $ABC$. Let $BH$ and $AC$ meet at a point $E$, and $CH$ and $AB$ meet at $F$. Suppose that $X$ is a point on the line $BC$. Also suppose that the circumcircle of triangle $BEX$ and the line $AB$ intersect again at $Y$, and the circumcircle of triangle $CFX$ and the line $AC$ intersect again at $Z$. Show that the circumcircle of triangle $AYZ$ is tangent to the line $AH$. Proposed by usjl
The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a path from $X$ to $Y$ is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called diverse if no road belongs to two or more paths in the collection. Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$. Proposed by Warut Suksompong, Thailand