Let $P=(x^4-40x^2+144)(x^3-16x)$. $a)$ Factor $P$ as a product of irreducible polynomials. $b)$ We write down the values of $P(10)$ and $P(91)$. What is the greatest common divisor of the two numbers?
2022 Bulgarian Spring Math Competition
Let $\triangle ABC$ have $AB = 1$ cm, $BC = 2$ cm and $AC = \sqrt{3}$ cm. Points $D$, $E$ and $F$ lie on segments $AB$, $AC$ and $BC$ respectively are such that $AE = BD$ and $BF = AD$. The angle bisector of $\angle BAC$ intersects the circumcircle of $\triangle ADE$ for the second time at $M$ and the angle bisector of $\angle ABC$ intersects the circumcircle of $\triangle BDF$ at $N$. Determine the length of $MN$.
Given the inequalities: $a)$ $\left(\frac{2a}{b+c}\right)^2+\left(\frac{2b}{a+c}\right)^2+\left(\frac{2c}{a+b}\right)^2\geq \frac{a}{c}+\frac{b}{a}+\frac{c}{b}$ $b)$ $\left(\frac{a+b}{c}\right)^2+\left(\frac{b+c}{a}\right)^2+\left(\frac{c+a}{b}\right)^2\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+9$ For each of them either prove that it holds for all positive real numbers $a$, $b$, $c$ or present a counterexample $(a,b,c)$ which doesn't satisfy the inequality.
Let $p = (a_{1}, a_{2}, \ldots , a_{12})$ be a permutation of $1, 2, \ldots, 12$. We will denote \[S_{p} = |a_{1}-a_{2}|+|a_{2}-a_{3}|+\ldots+|a_{11}-a_{12}|\]We'll call $p$ $\textit{optimistic}$ if $a_{i} > \min(a_{i-1}, a_{i+1})$ $\forall i = 2, \ldots, 11$. $a)$ What is the maximum possible value of $S_{p}$. How many permutations $p$ achieve this maximum?$\newline$ $b)$ What is the number of $\textit{optimistic}$ permtations $p$? $c)$ What is the maximum possible value of $S_{p}$ for an $\textit{optimistic}$ $p$? How many $\textit{optimistic}$ permutations $p$ achieve this maximum?
Let $f(x)$ be a quadratic function with integer coefficients. If we know that $f(0)$, $f(3)$ and $f(4)$ are all different and elements of the set $\{2, 20, 202, 2022\}$, determine all possible values of $f(1)$.
Let $\triangle ABC$ have median $CM$ ($M\in AB$) and circumcenter $O$. The circumcircle of $\triangle AMO$ bisects $CM$. Determine the least possible perimeter of $\triangle ABC$ if it has integer side lengths.
Find all primes $p$, such that there exist positive integers $x$, $y$ which satisfy $$\begin{cases} p + 49 = 2x^2\\ p^2 + 49 = 2y^2\\ \end{cases}$$
14 students attend the IMO training camp. Every student has at least $k$ favourite numbers. The organisers want to give each student a shirt with one of the student's favourite numbers on the back. Determine the least $k$, such that this is always possible if: $a)$ The students can be arranged in a circle such that every two students sitting next to one another have different numbers. $b)$ $7$ of the students are boys, the rest are girls, and there isn't a boy and a girl with the same number.
If $x, y, z \in \mathbb{R}$ are solutions to the system of equations $$\begin{cases} x - y + z - 1 = 0\\ xy + 2z^2 - 6z + 1 = 0\\ \end{cases}$$what is the greatest value of $(x - 1)^2 + (y + 1)^2$?
Let $\triangle ABC$ have incenter $I$. The line $CI$ intersects the circumcircle of $\triangle ABC$ for the second time at $L$, and $CI=2IL$. Points $M$ and $N$ lie on the segment $AB$, such that $\angle AIM =\angle BIN = 90^{\circ}$. Prove that $AB=2MN$.
A permutation $\sigma$ of the numbers $1,2,\ldots , 10$ is called $\textit{bad}$ if there exist integers $i, j, k$ which satisfy \[1 \leq i < j < k \leq 10 \quad \text{ and }\quad \sigma(j) < \sigma(k) < \sigma(i)\]and $\textit{good}$ otherwise. Find the number of $\textit{good}$ permutations.
Find the smallest odd prime $p$, such that there exist coprime positive integers $k$ and $\ell$ which satisfy \[4k-3\ell=12\quad \text{ and }\quad \ell^2+\ell k +k^2\equiv 3\text{ }(\text{mod }p)\]
Solve the equation \[(x+1)\log^2_{3}x+4x\log_{3}x-16=0\]
A circle through the vertices $A$ and $B$ of $\triangle ABC$ intersects segments $AC$ and $BC$ at points $P$ and $Q$ respectively. If $AQ=AC$, $\angle BAQ=\angle CBP$ and $AB=(\sqrt{3}+1)PQ$, find the measures of the angles of $\triangle ABC$.
In every cell of a table with $n$ rows and $m$ columns is written one of the letters $a$, $b$, $c$. Every two rows of the table have the same letter in at most $k\geq 0$ positions and every two columns coincide at most $k$ positions. Find $m$, $n$, $k$ if \[\frac{2mn+6k}{3(m+n)}\geq k+1\]
Let $n \geq 2$ be a positive integer. The set $M$ consists of $2n^2-3n+2$ positive rational numbers. Prove that there exists a subset $A$ of $M$ with $n$ elements with the following property: $\forall$ $2 \leq k \leq n$ the sum of any $k$ (not necessarily distinct) numbers from $A$ is not in $A$.
$ABCD$ is circumscribed in a circle $k$, such that $[ACB]=s$, $[ACD]=t$, $s<t$. Determine the smallest value of $\frac{4s^2+t^2}{5st}$ and when this minimum is achieved.
Let $ABCDV$ be a regular quadrangular pyramid with $V$ as the apex. The plane $\lambda$ intersects the $VA$, $VB$, $VC$ and $VD$ at $M$, $N$, $P$, $Q$ respectively. Find $VQ : QD$, if $VM : MA = 2 : 1$, $VN : NB = 1 : 1$ and $VP : PC = 1 : 2$.
Let $P,Q\in\mathbb{R}[x]$, such that $Q$ is a $2021$-degree polynomial and let $a_{1}, a_{2}, \ldots , a_{2022}, b_{1}, b_{2}, \ldots , b_{2022}$ be real numbers such that $a_{1}a_{2}\ldots a_{2022}\neq 0$. If for all real $x$ \[P(a_{1}Q(x) + b_{1}) + \ldots + P(a_{2021}Q(x) + b_{2021}) = P(a_{2022}Q(x) + b_{2022})\]prove that $P(x)$ has a real root.
Let $m$ and $n$ be positive integers and $p$ be a prime number. Find the greatest positive integer $s$ (as a function of $m,n$ and $p$) such that from a random set of $mnp$ positive integers we can choose $snp$ numbers, such that they can be partitioned into $s$ sets of $np$ numbers, such that the sum of the numbers in every group gives the same remainder when divided by $p$.