Determine all real $a$, such that the solutions to the system of equations $\begin{cases} \frac{3x-5}{3}+\frac{3x+5}{4}\geq \frac{x}{7}-\frac{1}{15}\\ (2x-a)^3+(2x+a)(1-4x^2)+16x^2a-6x^2a+a^3\leq 2a^2+a \end{cases}$ form an interval with length $\frac{32}{225}$.
2007 Bulgarian Autumn Math Competition
Let $ABCD$ be a convex quadrilateral. Determine all points $M$, which lie inside $ABCD$, such that the areas of $ABCM$ and $AMCD$ are equal.
Determine all triplets of prime numbers $p<q<r$, such that $p+q=r$ and $(r-p)(q-p)-27p$ is a square.
Let $ABCDEFG$ be a regular heptagon. We'll call the sides $AB$, $BC$, $CD$, $DE$, $EF$, $FG$ and $GA$ opposite to the vertices $E$, $F$, $G$, $A$, $B$, $C$ and $D$ respectively. If $M$ is a point inside the heptagon, we'll say that the line through $M$ and a vertex of the heptagon intersects a side of it (without the vertices) at a $\textit{perfect}$ point, if this side is opposite the vertex. Prove that for every choice of $M$, the number of $\textit{perfect}$ points is always odd.
We're given the functions $f(x)=|x-1|-|x-2|$ and $g(x)=|x-3|$. a) Draw the graph of the function $f(x)$. b) Determine the area of the section enclosed by the functions $f(x)$ and $g(x)$.
Let $a$, $b$, $c$ be real numbers, such that $a+b+c=0$ and $a^4+b^4+c^4=50$. Determine the value of $ab+bc+ca$.
Let the intersection of the diagonals $AC$ and $BD$ of the convex quadrilateral $ABCD$ be point $E$. Let $M$ be the midpoint of $AE$ and $N$ be the midpoint of $CD$. It's known that $BD$ bisects $\angle ABC$. Prove that $ABCD$ is cyclic if and only if $MBCN$ is cyclic.
Find the smallest natural number, which divides $2^{n}+15$ for some natural number $n$ and can be expressed in the form $3x^2-4xy+3y^2$ for some integers $x$ and $y$.
Find all integers $b$ and $c$ for which the equation $x^2-bx+c=0$ has two real roots $x_{1}$ and $x_{2}$ satisfying $x_{1}^2+x_{2}^2=5$.
Let $AC>BC$ in $\triangle ABC$ and $M$ and $N$ be the midpoints of $AC$ and $BC$ respectively. The angle bisector of $\angle B$ intersects $\overline{MN}$ at $P$. The incircle of $\triangle ABC$ has center $I$ and touches $BC$ at $Q$. The perpendiculars from $P$ and $Q$ to $MN$ and $BC$ respectively intersect at $R$. Let $S=AB\cap RN$. a) Prove that $PCQI$ is cyclic b) Express the length of the segment $BS$ with $a$, $b$, $c$ - the side lengths of $\triangle ABC$ .
For a natural number $m>1$ we'll denote with $f(m)$ the sum of all natural numbers less than $m$, which are also coprime to $m$. Find all natural numbers $n$, such that there exist natural numbers $k$ and $\ell$ which satisfy $f(n^{k})=n^{\ell}$.
Find all pairs of natural numbers $(m,n)$, $m\leq n$, such that there exists a table with $m$ rows and $n$ columns filled with the numbers 1 and 0, satisfying the following property: If in a cell there's a 0 (respectively a 1), then the number of zeros (respectively ones) in the row of this cell is equal to the number of zeros (respectively ones) in the column of this cell.
Let $0<\alpha,\beta<\frac{\pi}{2}$ which satisfy \[(\cos^2\alpha+\cos^2\beta)(1+\tan\alpha\tan\beta)=2\]Prove that $\alpha+\beta=\frac{\pi}{2}$.
Find all values of the parameter $a$ for which the inequality \[\sqrt{x-x^2-a}+\sqrt{6a-2x-x^2}\leq \sqrt{10a-2x-4x^2}\]has a unique solution.
In $\triangle ABC$ we have that $CC_{1}$ is an angle bisector. The points $P\in C_{1}B$, $Q\in BC$, $R\in AC$, $S\in AC_{1}$ satisfy $C_{1}P=PQ=QC$ and $CR=RS=SC_{1}$. Prove that $CC_{1}$ bisects $\angle SCP$.
There are 1000 towns $A_{1},A_{2},\ldots ,A_{1000}$ with airports in a country and some of them are connected via flights. It's known that the $i$-th town is connected with $d_{i}$ other towns where $d_{1}\leq d_{2}\leq \ldots \leq d_{1000}$ and $d_{j}\geq j+1$ for every $j=1,2,\ldots 999-d_{999}$. Prove that if the airport of any town $A_{k}$ is closed, then we'd still be able to get from any town $A_{i}$ to any $A_{j}$ for $i,j\neq k$ (possibly by more than one flight).
Determine the values of the real parameter $a$, such that the equation \[\sin 2x\sin 4x-\sin x\sin 3x=a\]has a unique solution in the interval $[0,\pi)$.
All edges of the triangular pyramid $ABCD$ are equal in length. Let $M$ be the midpoint of $DB$, $N$ is the point on $\overline{AB}$, such that $2NA=NB$ and $N\not\in AB$ and $P$ is a point on the altitude through point $D$ in $\triangle BCD$. Find $\angle MPD$ if the intersection of the pyramid with the plane $(NMP)$ is a trapezoid.
Find all real numbers $r$, such that the inequality \[r(ab+bc+ca)+(3-r)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9\]holds for any real $a,b,c>0$.
Let $p$ and $q$ be prime numbers and $\{a_{n}\}_{n=1}^{\infty}$ be a sequence of integers defined by: \[a_{0}=0, a_{1}=1, a_{n+2}=pa_{n+1}-qa_{n}\quad\forall n\geq 0\]Find $p$ and $q$ if there exists an integer $k$ such that $a_{3k}=-3$.