Find all pairs of prime numbers $(p,q)$ for which \[2^p = 2^{q-2} + q!.\]
2022 Turkey Team Selection Test
9 March 2022 - Day 1
Find all functions $f: \mathbb{Q^+} \rightarrow \mathbb{Q}$ satisfying $f(x)+f(y)= \left(f(x+y)+\frac{1}{x+y} \right) (1-xy+f(xy))$ for all $x, y \in \mathbb{Q^+}$.
In a triangle $ABC$, the incircle centered at $I$ is tangent to the sides $BC, AC$ and $AB$ at $D, E$ and $F$, respectively. Let $X, Y$ and $Z$ be the feet of the perpendiculars drawn from $A, B$ and $C$ to a line $\ell$ passing through $I$. Prove that $DX, EY$ and $FZ$ are concurrent.
10 March 2022 - Day 2
We have three circles $w_1$, $w_2$ and $\Gamma$ at the same side of line $l$ such that $w_1$ and $w_2$ are tangent to $l$ at $K$ and $L$ and to $\Gamma$ at $M$ and $N$, respectively. We know that $w_1$ and $w_2$ do not intersect and they are not in the same size. A circle passing through $K$ and $L$ intersect $\Gamma$ at $A$ and $B$. Let $R$ and $S$ be the reflections of $M$ and $N$ with respect to $l$. Prove that $A, B, R, S$ are concyclic.
On a circle, 2022 points are chosen such that distance between two adjacent points is always the same. There are $k$ arcs, each having endpoints on chosen points, with different lengths. Arcs do not contain each other. What is the maximum possible number of $k$?
For a polynomial $P(x)$ with integer coefficients and a prime $p$, if there is no $n \in \mathbb{Z}$ such that $p|P(n)$, we say that polynomial $P$ excludes $p$. Is there a polynomial with integer coefficients such that having degree of 5, excluding exactly one prime and not having a rational root?
11 March 2022 - Day 3
What is the minimum value of the expression $$xy+yz+zx+\frac 1x+\frac 2y+\frac 5z$$where $x, y, z$ are positive real numbers?
$ABC$ triangle with $|AB|<|BC|<|CA|$ has the incenter $I$. The orthocenters of triangles $IBC, IAC$ and $IAB$ are $H_A, H_A$ and $H_A$. $H_BH_C$ intersect $BC$ at $K_A$ and perpendicular line from $I$ to $H_BH_B$ intersect $BC$ at $L_A$. $K_B, L_B, K_C, L_C$ are defined similarly. Prove that $$|K_AL_A|=|K_BL_B|+|K_CL_C|$$
In every acyclic graph with 2022 vertices we can choose $k$ of the vertices such that every chosen vertex has at most 2 edges to chosen vertices. Find the maximum possible value of $k$.