2022 Caucasus Mathematical Olympiad

Juniors

Day 1

1

Positive integers $a$, $b$, $c$ are given. It is known that $\frac{c}{b}=\frac{b}{a}$, and the number $b^2-a-c+1$ is a prime. Prove that $a$ and $c$ are double of a squares of positive integers.

2

In parallelogram $ABCD$, points $E$ and $F$ on segments $AD$ and $CD$ are such that $\angle BCE=\angle BAF$. Points $K$ and $L$ on segments $AD$ and $CD$ are such that $AK=ED$ and $CL=FD$. Prove that $\angle BKD=\angle BLD$.

3

Pete wrote down $21$ pairwise distinct positive integers, each not greater than $1,000,000$. For every pair $(a, b)$ of numbers written down by Pete, Nick wrote the number $$F(a;b)=a+b -\gcd(a;b)$$on his piece of paper. Prove that one of Nick’s numbers differs from all of Pete’s numbers.

4

Do there exist 2021 points with integer coordinates on the plane such that the pairwise distances between them are pairwise distinct consecutive integers?

Day 2

5

Let $S$ be the set of all $5^6$ positive integers, whose decimal representation consists of exactly 6 odd digits. Find the number of solutions $(x,y,z)$ of the equation $x+y=10z$, where $x\in S$, $y\in S$, $z\in S$.

6

16 NHL teams in the first playoff round divided in pairs and to play series until 4 wins (thus the series could finish with score 4-0, 4-1, 4-2, or 4-3). After that 8 winners of the series play the second playoff round divided into 4 pairs to play series until 4 wins, and so on. After all the final round is over, it happens that $k$ teams have non-negative balance of wins (for example, the team that won in the first round with a score of 4-2 and lost in the second with a score of 4-3 fits the condition: it has $4+3=7$ wins and $2+4=6$ losses). Find the least possible $k$.

7

Point $P$ is chosen on the leg $CB$ of right triangle $ABC$ ($\angle ACB = 90^\circ$). The line $AP$ intersects the circumcircle of $ABC$ at point $Q$. Let $L$ be the midpoint of $PB$. Prove that $QL$ is tangent to a fixed circle independent of the choice of point $P$.

8

Paul can write polynomial $(x+1)^n$, expand and simplify it, and after that change every coefficient by its reciprocal. For example if $n=3$ Paul gets $(x+1)^3=x^3+3x^2+3x+1$ and then $x^3+\frac13x^2+\frac13x+1$. Prove that Paul can choose $n$ for which the sum of Paul’s polynomial coefficients is less than $2.022$.

Seniors

Day 1

1

Given a rectangular table with 2 rows and 100 columns. Dima fills the cells of the first row with numbers 1, 2 or 3. Prove that Alex can fill the cells of the second row with numbers 1, 2, 3 in such a way that the numbers in each column are different and the sum of the numbers in the second row equals 200.

2

Prove that infinitely many positive integers can be represented as $(a-1)/b + (b-1)/c + (c-1)/a$, where $a$, $b$ and $c$ are pairwise distinct positive integers greater than 1.

3

Do there exist 100 points on the plane such that the pairwise distances between them are pairwise distinct consecutive integer numbers larger than 2022?

4

Let $\omega$ is tangent to the sides of an acute angle with vertex $A$ at points $B$ and $C$. Let $D$ be an arbitrary point onn the major arc $BC$ of the circle $\omega$. Points $E$ and $F$ are chosen inside the angle $DAC$ so that quadrilaterals $ABDF$ and $ACED$ are inscribed and the points $A,E,F$ lie on the same straight line. Prove that lines $BE$ and $CF$ intersectat $\omega$.

Day 2

See Juniors 6 - 5

6

Let $ABC$ be an acute triangle. Let $P$ be a point on the circle $(ABC)$, and $Q$ be a point on the segment $AC$ such that $AP\perp BC$ and $BQ\perp AC$. Lot $O$ be the circumcenter of triangle $APQ$. Find the angle $OBC$.

See Juniors 8 - 7

8

There are $n > 2022$ cities in the country. Some pairs of cities are connected with straight two-ways airlines. Call the set of the cities {\it unlucky}, if it is impossible to color the airlines between them in two colors without monochromatic triangle (i.e. three cities $A$, $B$, $C$ with the airlines $AB$, $AC$ and $BC$ of the same color). The set containing all the cities is unlucky. Is there always an unlucky set containing exactly 2022 cities?