Let $k,n\ge 1$ be relatively prime integers. All positive integers not greater than $k+n$ are written in some order on the blackboard. We can swap two numbers that differ by $k$ or $n$ as many times as we want. Prove that it is possible to obtain the order $1,2,\dots,k+n-1, k+n$.
2014 Polish MO Finals
Day 1
Let $k\ge 2$, $n\ge 1$, $a_1, a_2,\dots, a_k$ and $b_1, b_2, \dots, b_n$ be integers such that $1<a_1<a_2<\dots <a_k<b_1<b_2<\dots <b_n$. Prove that if $a_1+a_2+\dots +a_k>b_1+b_2+\dots + b_n$, then $a_1\cdot a_2\cdot \ldots \cdot a_k>b_1\cdot b_2 \cdot \ldots \cdot b_n$.
A tetrahedron $ABCD$ with acute-angled faces is inscribed in a sphere with center $O$. A line passing through $O$ perpendicular to plane $ABC$ crosses the sphere at point $D'$ that lies on the opposide side of plane $ABC$ than point $D$. Line $DD'$ crosses plane $ABC$ in point $P$ that lies inside the triangle $ABC$. Prove, that if $\angle APB=2\angle ACB$, then $\angle ADD'=\angle BDD'$.
Day 2
Denote the set of positive rational numbers by $\mathbb{Q}_{+}$. Find all functions $f: \mathbb{Q}_{+}\rightarrow \mathbb{Q}_{+}$ that satisfy $$\underbrace{f(f(f(\dots f(f}_{n}(q))\dots )))=f(nq)$$for all integers $n\ge 1$ and rational numbers $q>0$.
Find all pairs $(x,y)$ of positive integers that satisfy $$2^x+17=y^4$$.
In an acute triangle $ABC$ point $D$ is the point of intersection of altitude $h_a$ and side $BC$, and points $M, N$ are orthogonal projections of point $D$ on sides $AB$ and $AC$. Lines $MN$ and $AD$ cross the circumcircle of triangle $ABC$ at points $P, Q$ and $A, R$. Prove that point $D$ is the center of the incircle of $PQR$.