2021 Thailand TST

Day 0

1

For a positive integer $n$, consider a square cake which is divided into $n \times n$ pieces with at most one strawberry on each piece. We say that such a cake is delicious if both diagonals are fully occupied, and each row and each column has an odd number of strawberries. Find all positive integers $n$ such that there is an $n \times n$ delicious cake with exactly $\left\lceil\frac{n^2}{2}\right\rceil$ strawberries on it.

2

Prove that, for all positive integers $m$ and $n$, we have $$\left\lfloor m\sqrt{2} \right\rfloor\cdot\left\lfloor n\sqrt{7} \right\rfloor<\left\lfloor mn\sqrt{14} \right\rfloor.$$

3

Let $P$ be a point on the circumcircle of acute triangle $ABC$. Let $D,E,F$ be the reflections of $P$ in the $A$-midline, $B$-midline, and $C$-midline. Let $\omega$ be the circumcircle of the triangle formed by the perpendicular bisectors of $AD, BE, CF$. Show that the circumcircles of $\triangle ADP, \triangle BEP, \triangle CFP,$ and $\omega$ share a common point.

Day 1

1

Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$. South Africa

2

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$Israel

3

Let $p$ be an odd prime, and put $N=\frac{1}{4} (p^3 -p) -1.$ The numbers $1,2, \dots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N,$ denote $r(n)$ the fraction of integers $\{ 1,2, \dots, n \}$ that are red. Prove that there exists a positive integer $a \in \{ 1,2, \dots, p-1\}$ such that $r(n) \neq a/p$ for all $n = 1,2, \dots , N.$ Netherlands

Day 2

1

Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other. $\emph{Slovakia}$

2

For any odd prime $p$ and any integer $n,$ let $d_p (n) \in \{ 0,1, \dots, p-1 \}$ denote the remainder when $n$ is divided by $p.$ We say that $(a_0, a_1, a_2, \dots)$ is a p-sequence, if $a_0$ is a positive integer coprime to $p,$ and $a_{n+1} =a_n + d_p (a_n)$ for $n \geqslant 0.$ (a) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_n >b_n$ for infinitely many $n,$ and $b_n > a_n$ for infinitely many $n?$ (b) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_0 <b_0,$ but $a_n >b_n$ for all $n \geqslant 1?$ United Kingdom

3

Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row $r$ and column $c$. A pair $(R, C)$, where $R$ is a set of rows and $C$ a set of columns, is called a saddle pair if the following two conditions are satisfied: $(i)$ For each row $r^{\prime}$, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$; $(ii)$ For each column $c^{\prime}$, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$. A saddle pair $(R, C)$ is called a minimal pair if for each saddle pair $\left(R^{\prime}, C^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.

Day 3

1

Version 1. Let $n$ be a positive integer, and set $N=2^{n}$. Determine the smallest real number $a_{n}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x . \]Version 2. For every positive integer $N$, determine the smallest real number $b_{N}$ such that, for all real $x$, \[ \sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x . \]

2

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\](A disk is assumed to contain its boundary.)

3

Determine all functions $f$ defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: $(i)$ $f(n) \neq 0$ for at least one $n$; $(ii)$ $f(x y)=f(x)+f(y)$ for every positive integers $x$ and $y$; $(iii)$ there are infinitely many positive integers $n$ such that $f(k)=f(n-k)$ for all $k<n$.

Day 4

1

For each prime $p$, construct a graph $G_p$ on $\{1,2,\ldots p\}$, where $m\neq n$ are adjacent if and only if $p$ divides $(m^{2} + 1-n)(n^{2} + 1-m)$. Prove that $G_p$ is disconnected for infinitely many $p$

2

Let $ABCD$ be a cyclic quadrilateral. Points $K, L, M, N$ are chosen on $AB, BC, CD, DA$ such that $KLMN$ is a rhombus with $KL \parallel AC$ and $LM \parallel BD$. Let $\omega_A, \omega_B, \omega_C, \omega_D$ be the incircles of $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$. Prove that the common internal tangents to $\omega_A$, and $\omega_C$ and the common internal tangents to $\omega_B$ and $\omega_D$ are concurrent.

3

Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying \[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\]for all integers $a$ and $b$

Day 5

1

In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.

2

Let $\mathcal{A}$ be the set of all $n\in\mathbb{N}$ for which there exist $k\in\mathbb{N}$ and $a_0,a_1,\dots,a_{k-1}\in \{1,2,\dots,9\}$ such that $a_0 \geq a_1 \geq \cdots \geq a_{k-1}$ and $n = a_0 +a_1 \cdot 10^1 +\cdots +a_{k-1}\cdot 10^{k-1}$. Let $\mathcal{B}$ be the set of all $m \in\mathbb{N}$ for which there exist $l \in\mathbb{N}$ and $b_0,b_1,\dots,b_{l-1} \in \{1,2,\dots,9\}$ such that $b_0 \leq b_1 \leq \cdots\leq b_{l-1}$ and $m = b_0 + b_1 \cdot 10^1 + \cdots+ b_{l-1}\cdot 10^{l-1}$. Are there infinitely many $n\in \mathcal{A}$ such that $n^2-3\in\mathcal{A} \ ?$ Are there infinitely many $m\in \mathcal{B}$ such that $m^2-3\in\mathcal{B} \ ?$ Proposed by Pakawut Jiradilok and Wijit Yangjit

3

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

Day 6

1

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*}with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2

The Fibonacci numbers $F_0, F_1, F_2, . . .$ are defined inductively by $F_0=0, F_1=1$, and $F_{n+1}=F_n+F_{n-1}$ for $n \ge 1$. Given an integer $n \ge 2$, determine the smallest size of a set $S$ of integers such that for every $k=2, 3, . . . , n$ there exist some $x, y \in S$ such that $x-y=F_k$. Proposed by Croatia

3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other