2016 Thailand TSTST

Algebra and Number Theory Exam

1

Find all polynomials $P\in\mathbb{Z}[x]$ such that $$|P(x)-x|\leq x^2+1$$for all real numbers $x$.

2

Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \]contains at least one integer term.

3

Determine whether there exists a positive integer $a$ such that $$2015a,2016a,\dots,2558a$$are all perfect power.

Inequalities and Combinatorics Exam

1

Let $a_1, a_2, a_3, \dots$ be a sequence of integers such that $\text{(i)}$ $a_1=0$ $\text{(ii)}$ for all $i\geq 1$, $a_{i+1}=a_i+1$ or $-a_i-1$. Prove that $\frac{a_1+a_2+\cdots+a_n}{n}\geq-\frac{1}{2}$ for all $n\geq 1$.

2

Find the number of sequences $a_1,a_2,\dots,a_{100}$ such that $\text{(i)}$ There exists $i\in\{1,2,\dots,100\}$ such that $a_i=3$, and $\text{(ii)}$ $|a_i-a_{i+1}|\leq 1$ for all $1\leq i<100$.

3

Find all positive integers $n\geq 3$ such that it is possible to triangulate a convex $n$-gon such that all vertices of the $n$-gon have even degree.

4

Let $a, b, c$ be positive reals such that $4(a+b+c)\geq\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Define \begin{align*} &A =\sqrt{\frac{3a}{a+2\sqrt{bc}}}+\sqrt{\frac{3b}{b+2\sqrt{ca}}}+\sqrt{\frac{3c}{c+2\sqrt{ab}}} \\ &B =\sqrt{a}+\sqrt{b}+\sqrt{c} \\ &C =\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}. \end{align*}Prove that $$A\leq 2B\leq 4C.$$

Functional Equations and Geometry Exam

1

Find all functions $f:\mathbb{Q}\to\mathbb{Q}$ such that $$f(xy)+f(x+y)=f(x)f(y)+f(x)+f(y)$$for all $x,y\in\mathbb{Q}$.

2

Let $\omega$ be a circle touching two parallel lines $\ell_1, \ell_2$, $\omega_1$ a circle touching $\ell_1$ at $A$ and $\omega$ externally at $C$, and $\omega_2$ a circle touching $\ell_2$ at $B$, $\omega$ externally at $D$, and $\omega_1$ externally at $E$. Prove that $AD, BC$ intersect at the circumcenter of $\vartriangle CDE$.

3

Let $H$ be the orthocenter of acute-angled $\vartriangle ABC$, and $X, Y$ points on the ray $AB, AC$. ($B$ lies between $X, A$, and $C$ lies between $Y, A$.) Lines $HX, HY$ intersect $BC$ at $D, E$ respectively. Let the line through $D$ parallel to $AC$ intersect $XY$ at $Z$. Prove that $\angle XHY = 90^o$ if and only if $ZE \parallel AB$.