2021 Serbia JBMO TSTs

1

Prove that for positive real numbers $a, b, c$ the following inequality holds: \begin{align*} \frac{a}{9bc+1}+\frac{b}{9ca+1}+\frac{c}{9ab+1}\geq \frac{a+b+c}{1+(a+b+c)^2} \end{align*}When does equality occur?

2

Solve the following equation in natural numbers: \begin{align*} x^2=2^y+2021^z \end{align*}

3

Two players play the following game: alternatively they write numbers $1$ or $0$ in the vertices of an $n$-gon. First player starts the game and wins if after any of his moves there exists a triangle, whose vertices are three consecutive vertices of the $n$-gon, such that the sum of numbers in it's vertices is divisible by $3$. Second player wins if he prevents this. Determine which player has a winning strategy if: a) $n=2019$ b) $n=2020$ c) $n=2021$

4

On sides $AB$ and $AC$ of an acute triangle $\Delta ABC$, with orthocenter $H$ and circumcenter $O$, are given points $P$ and $Q$ respectively such that $APHQ$ is a parallelogram. Prove the following equality: \begin{align*} \frac{PB\cdot PQ}{QA\cdot QO}=2 \end{align*}