Mad scientist Kyouma writes $N$ positive integers on a board. Each second, he chooses two numbers $x, y$ written on the board with $x > y$, and writes the number $x^2-y^2$ on the board. After some time, he sends the list of all the numbers on the board to Christina. She notices that all the numbers from 1 to 1000 are present on the list. Aid Christina in finding the minimum possible value of N.
India EGMO 2021 TST
Day 1
Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$Israel
In acute $\triangle ABC$ with circumcircle $\Gamma$ and incentre $I$, the incircle touches side $AB$ at $F$. The external angle bisector of $\angle ACB$ meets ray $AB$ at $L$. Point $K$ lies on the arc $CB$ of $\Gamma$ not containing $A$, such that $\angle CKI=\angle IKL$. Ray $KI$ meets $\Gamma$ again at $D\ne K$. Prove that $\angle ACF =\angle DCB$.
Day 2
Let $n$ be a positive integer. Find the number of permutations $a_1$, $a_2$, $\dots a_n$ of the sequence $1$, $2$, $\dots$ , $n$ satisfying $$a_1 \le 2a_2\le 3a_3 \le \dots \le na_n$$. Proposed by United Kingdom
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
Let $n>2$ be a positive integer and $b=2^{2^n}$. Let $a$ be an odd positive integer such that $a\le b \le 2a$. Show that $a^2+b^2-ab$ is not a square.