Let $a$, $b$, and $c $ be integers greater than zero. Show that the numbers $$2a ^ 2 + b ^ 2 + 3 \,\,, 2b ^ 2 + c ^ 2 + 3\,\,, 2c ^ 2 + a ^ 2 + 3 $$cannot be all perfect squares.
2019 Regional Olympiad of Mexico Center Zone
Find all functions $ f: \mathbb {R} \rightarrow \mathbb {R} $ such that $ f (x + y) \le f (xy) $ for every pair of real $ x $, $ y$.
Let $ABC$ be an acute triangle and $D$ a point on the side $BC$ such that $\angle BAD = \angle DAC$. The circumcircles of the triangles $ABD$ and $ACD$ intersect the segments $AC$ and $AB$ at $E$ and $F$, respectively. The internal bisectors of $\angle BDF$ and $\angle CDE$ intersect the sides $AB$ and $AC$ at $P$ and $Q$, respectively. Points $X$ and $Y$ are chosen on the side $BC$ such that $PX$ is parallel to $AC$ and $QY$ is parallel to $AB$. Finally, let $Z$ be the point of intersection of $BE$ and $CF$. Prove that $ZX = ZY$.
Let $ABC$ be a triangle with $\angle BAC> 90 ^ \circ$ and $D$ a point on $BC$. Let $E$ and $F$be the reflections of the point $D$ about $AB$ and $AC$, respectively. Suppose that $BE$ and $CF$ intersect at $P$. Show that $AP$ passes through the circumcenter of triangle $ABC$.
A serie of positive integers $a_{1}$,$a_{2}$,. . . ,$a_{n}$ is $auto-delimited$ if for every index $i$ that holds $1\leq i\leq n$, there exist at least $a_{i}$ terms of the serie such that they are all less or equal to $i$. Find the maximum value of the sum $a_{1}+a_{2}+\cdot \cdot \cdot+a_{n}$, where $a_{1}$,$a_{2}$,. . . ,$a_{n}$ is an $auto-delimited$ serie.
Find all positive integers $m$ with the next property: If $d$ is a positive integer less or equal to $m$ and it isn't coprime to $m$ , then there exist positive integers $a_{1}, a_{2}$,. . ., $a_{2019}$ (where all of them are coprimes to $m$) such that $m+a_{1}d+a_{2}d^{2}+\cdot \cdot \cdot+a_{2019}d^{2019}$ is a perfect power.