Consider the set: $A = \{1, 2,..., 100\}$ Prove that if we take $11$ different elements from $A$, there are $x, y$ such that $x \neq y$ and $0 < |\sqrt{x} - \sqrt{y}| < 1$
2012 Regional Olympiad of Mexico Center Zone
Let $m, n$ integers such that: $(n-1)^3+n^3+(n+1)^3=m^3$ Prove that 4 divides $n$
In the parallelogram $ABCD$, $\angle BAD =60 ^ \circ$. Let $E $ be the intersection point of the diagonals. The circle circumscribed to the triangle $ACD$ intersects the line $AB$ at the point $K$ (different from $A$), the line $BD$ at the point $P$ (different from $D$), and to the line $BC$ in $L$ (different from $C$). The line $EP$ intersects the circumscribed circle of the triangle $CEL$ at the points $E$ and $M$. Show that the triangles $KLM$ and $CAP$ are congruent.
On an acute triangle $ABC$ we draw the internal bisector of $<ABC$, $BE$, and the altitude $AD$, ($D$ on $BC$), show that $<CDE$ it's bigger than 45 degrees.
Consider and odd prime $p$. For each $i$ at $\{1, 2,..., p-1\}$, let $r_i$ be the rest of $i^p$ when it is divided by $p^2$. Find the sum: $r_1 + r_2 + ... + r_{p-1}$
A board of $2n$ x $2n$ is colored chess style, a movement is the changing of colors of a $2$ x $2$ square. For what integers $n$ is possible to complete the board with one color using a finite number of movements?