2015 FYROM JBMO Team Selection Test

1

Solve the equation $x^2+y^4+1=6^z$ in the set of integers.

2

A circle $k$ with center $O$ and radius $r$ and a line $p$ which has no common points with $k$, are given. Let $E$ be the foot of the perpendicular from $O$ to $p$. Let $M$ be an arbitrary point on $p$, distinct from $E$. The tangents from the point $M$ to the circle $k$ are $MA$ and $MB$. If $H$ is the intersection of $AB$ and $OE$, then prove that $OH=\frac{r^2}{OE}$.

3

Let $a, b$ and $c$ be positive real numbers. Prove that $\prod_{cyc}(16a^2+8b+17)\geq2^{12}\prod_{cyc}(a+1)$.

4

Let $\triangle ABC$ be an acute angled triangle and let $k$ be its circumscribed circle. A point $O$ is given in the interior of the triangle, such that $CE=CF$, where $E$ and $F$ are on $k$ and $E$ lies on $AO$ while $F$ lies on $BO$. Prove that $O$ is on the angle bisector of $\angle ACB$ if and only if $AC=BC$.

5

$A$ and $B$ are two identical convex polygons, each with an area of $2015$. The polygon $A$ is divided into polygons $A_1, A_2,...,A_{2015}$, while $B$ is divided into polygons $B_1, B_2,...,B_{2015}$. Each of these smaller polygons has a positive area. Furthermore, $A_1, A_2,...,A_{2015}$ and $B_1, B_2,...,B_{2015}$ are colored in $2015$ distinct colors, such that $A_i$ and $A_j$ are differently colored for every distinct $i$ and $j$ and $B_i$ and $B_j$ are also differently colored for every distinct $i$ and $j$. After $A$ and $B$ overlap, we calculate the sum of the areas with the same colors. Prove that we can color the polygons such that this sum is at least $1$.