Let $n>1$ be an integer. Prove that there exist $m>n^n $ such that $\frac {n^m-m^n}{m+n} $ is a positive integer.
2016 Serbia National Math Olympiad
Day 1
Let $n $ be a positive integer. Let $f $ be a function from nonnegative integers to themselves. Let $f (0,i)=f (i,0)=0$, $f (1, 1)=n $, and $ f(i, j)= [\frac {f(i-1,j)}{2}]+ [\frac {f(i, j-1)}{2}] $ for positive integers $i, j$ such that $i*j>1$. Find the number of pairs $(i,j) $ such that $f (i, j) $ is an odd number.( $[x]$ is the floor function).
Let $ABC$ be a triangle and $O$ its circumcentre. A line tangent to the circumcircle of the triangle $BOC$ intersects sides $AB$ at $D$ and $AC$ at $E$. Let $A'$ be the image of $A$ under $DE$. Prove that the circumcircle of the triangle $A'DE$ is tangent to the circumcircle of triangle $ABC$.
PS Only user nikolapavlovic solved problem 3 during $TST$
Day 2
Let $ABC $be a triangle, and $I $ the incenter, $M $ midpoint of $ BC $, $ D $ the touch point of incircle and $ BC $. Prove that perpendiculars from $M, D, A $ to $AI, IM, BC $ respectively are concurrent
There are $2n-1$ twoelement subsets of set $1,2,...,n$. Prove that one can choose $n$ out of these such that their union contains no more than $\frac{2}{3}n+1$ elements.
Let $a_1, a_2, \dots, a_{2^{2016}}$ be positive integers not bigger than $2016$. We know that for each $n \leq 2^{2016}$, $a_1a_2 \dots a_{n} +1 $ is a perfect square. Prove that for some $i $ , $a_i=1$.