2020 Malaysia IMONST 2

Seniors

1

Given a trapezium with two parallel sides of lengths $m$ and $n$, where $m$, $n$ are integers, prove that it is possible to divide the trapezium into several congruent triangles.

2

Prove that \[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +\frac{1}{2019}-\frac{1}{2020}=\frac{1}{1011}+\frac{1}{1012}+\cdots +\frac{1}{2020}\]

3

Find all possible integer values of $n$ such that $12n^2 + 12n + 11$ is a $4$-digit number with equal digits.

4

Given are four circles $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$. Circles $\Gamma_1$ and $\Gamma_2$ are externally tangent at point $A$. Circles $\Gamma_2$ and $\Gamma_3$ are externally tangent at point $B$. Circles $\Gamma_3$ and $\Gamma_4$ are externally tangent at point $C$. Circles $\Gamma_4$ and $\Gamma_1$ are externally tangent at point $D$. Prove that $ABCD$ is cyclic.

5

Let $p$ and $q$ be real numbers such that the quadratic equation $x^2 + px + q = 0$ has two distinct real solutions $x_1$ and $x_2$. Suppose $|x_1-x_2|=1$, $|p-q|=1$. Prove that $p, q, x_1, x_2$ are all integers.

6

Consider the following one-person game: A player starts with score $0$ and writes the number $20$ on an empty whiteboard. At each step, she may erase any one integer (call it a) and writes two positive integers (call them $b$ and $c$) such that $b + c = a$. The player then adds $b\times c$ to her score. She repeats the step several times until she ends up with all $1$'s on the whiteboard. Then the game is over, and the final score is calculated. Let $M, m$ be the maximum and minimum final score that can be possibly obtained respectively. Find $M-m$.

Juniors

1

Prove that if $a$ and $b$ are legs, $c$ is the hypotenuse of a right triangle, then the radius of a circle inscribed in this triangle can be found by the formula $r = \frac12 (a + b - c)$.

2

Prove that for any integer $n\ge 6$ we can divide an equilateral triangle completely into $n$ smaller equilateral triangles.

3

Given integers $a$ and $b$ such that $a^2+b^2$ is divisible by $11$. Prove that $a$ and $b$ are both divisible by $11$.

same as Seniors p1 - 4

same as Seniors p2 - 5

same as Seniors p3 - 6