2009 Puerto Rico Team Selection Test

1

By the time a party is over, $ 28$ handshakes have occurred. If everyone shook everyone else's hand once, how many people attended the party?

2

The last three digits of $ N$ are $ x25$. For how many values of $ x$ can $ N$ be the square of an integer?

3

On an arbitrary triangle $ ABC$ let $ E$ be a point on the height from $ A$. Prove that $ (AC)^2 - (CE)^2 = (AB)^2 - (EB)^2$.

4

Find all integers $ b$ and $ c$ such that the equation $ x^2 - bx + c = 0$ has two real roots $ x_1, x_2$ satisfying $ x_1^2 + x_2^2 = 5$.

5

Let $ ABCD$ be a quadrilateral inscribed in a circle. The diagonal $ BD$ bisects $ AC$. If $ AB = 10$, $ AD = 12$ and $ DC = 11$, find $ BC$.

6

The entries on an $ n$ × $ n$ board are colored black and white like it is usually done in a chessboard, and the upper left hand corner is black. We color the entries on the chess board black according to the following rule: In each step we choose an arbitrary $ 2$×$ 3$ or $ 3$× $ 2$ rectangle that still contains $ 3$ white entries, and we color these three entries black. For which values of $ n$ can the whole board be colored black in a finite number of steps

IberoAmerican TST

1

A positive integer is called good if it can be written as the sum of two distinct integer squares. A positive integer is called better if it can be written in at least two was as the sum of two integer squares. A positive integer is called best if it can be written in at least four ways as the sum of two distinct integer squares. a) Prove that the product of two good numbers is good. b) Prove that $ 5$ is good, $ 2005$ is better, and $ 2005^2$ is best.

2

In each box of a $ 1 \times 2009$ grid, we place either a $ 0$ or a $ 1$, such that the sum of any $ 90$ consecutive boxes is $ 65$. Determine all possible values of the sum of the $ 2009$ boxes in the grid.

3

Show that if $ h_A, h_B,$ and $ h_C$ are the altitudes of $ \triangle ABC$, and $ r$ is the radius of the incircle, then $$ h_A + h_B + h_C \ge 9r$$

4

The point $ M$ is chosen inside parallelogram $ ABCD$. Show that $ \angle MAB$ is congruent to $ \angle MCB$, if and only if $ \angle MBA$ and $ \angle MDA$ are congruent.

5

The weird mean of two numbers $ a$ and $ b$ is defined as $ \sqrt {\frac {2a^2 + 3b^2}{5}}$. $ 2009$ positive integers are placed around a circle such that each number is equal to the the weird mean of the two numbers beside it. Show that these $ 2009$ numbers must be equal.