José has the following list of numbers: $100, 101, 102, ..., 118, 119, 120$. He calculates the sum of each of the pairs of different numbers that you can put together. How many different prime numbers can you get calculating those sums?
2020 Paraguay Mathematical Olympiad
Laura is putting together the following list: $a_0, a_1, a_2, a_3, a_4, ..., a_n$, where $a_0 = 3$ and $a_1 = 4$. She knows that the following equality holds for any value of $n$ integer greater than or equal to $1$: $$a_n^2-2a_{n-1}a_{n+1} =(-2)^n.$$Laura calculates the value of $a_4$. What value does it get?
In triangle $ABC$, side $AC$ is $8$ cm. Two segments are drawn parallel to $AC$ that have their ends on $AB$ and $BC$ and that divide the triangle into three parts of equal area. What is the length of the parallel segment closest to $AC$?
In the square $ABCD$ the points $E$ and $F$ are marked on the sides $AB$ and $BC$ respectively, in such a way that $EB = 2AE$ and $BF = FC$. Let $G$ be the intersection between $DF$ and $EC$. If the side of the square equals $10$, what is the distance from point $G$ to side $AB$?
The general term of a sequence of numbers is defined as $a_n =\frac{1}{n^2 - n}$, for every integer $n \ge 3$. That is, $a_3 =\frac16$, $a_4 =\frac{1}{12}$, $a_5 =\frac{1}{20}$, and so on. Find a general expression for the sum $S_n$, which is the sum of all terms from $a_3$ until $a_n$.