2020 Paraguay Mathematical Olympiad

1

José has the following list of numbers: $100, 101, 102, ..., 118, 119, 120$. He calculates the sum of each of the pairs of different numbers that you can put together. How many different prime numbers can you get calculating those sums?

2

Laura is putting together the following list: $a_0, a_1, a_2, a_3, a_4, ..., a_n$, where $a_0 = 3$ and $a_1 = 4$. She knows that the following equality holds for any value of $n$ integer greater than or equal to $1$: $$a_n^2-2a_{n-1}a_{n+1} =(-2)^n.$$Laura calculates the value of $a_4$. What value does it get?

3

In triangle $ABC$, side $AC$ is $8$ cm. Two segments are drawn parallel to $AC$ that have their ends on $AB$ and $BC$ and that divide the triangle into three parts of equal area. What is the length of the parallel segment closest to $AC$?

4

In the square $ABCD$ the points $E$ and $F$ are marked on the sides $AB$ and $BC$ respectively, in such a way that $EB = 2AE$ and $BF = FC$. Let $G$ be the intersection between $DF$ and $EC$. If the side of the square equals $10$, what is the distance from point $G$ to side $AB$?

5

The general term of a sequence of numbers is defined as $a_n =\frac{1}{n^2 - n}$, for every integer $n \ge 3$. That is, $a_3 =\frac16$, $a_4 =\frac{1}{12}$, $a_5 =\frac{1}{20}$, and so on. Find a general expression for the sum $S_n$, which is the sum of all terms from $a_3$ until $a_n$.