2021 Saudi Arabia IMO TST

Day I

1

For a non-empty set $T$ denote by $p(T)$ the product of all elements of $T$. Does there exist a set $T$ of $2021$ elements such that for any $a\in T$ one has that $P(T)-a$ is an odd integer? Consider two cases: 1) All elements of $T$ are irrational numbers. 2) At least one element of $T$ is a rational number.

2

Find all positive integers $n$, such that $n$ is a perfect number and $\varphi (n)$ is power of $2$. Note:a positive integer $n$, is called perfect if the sum of all its positive divisors is equal to $2n$.

3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

Day II

4

In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.

5

Let $ABC$ be a non isosceles triangle with incenter $I$ . The circumcircle of the triangle $ABC$ has radius $R$. Let $AL$ be the external angle bisector of $\angle BAC $with $L \in BC$. Let $K$ be the point on perpendicular bisector of $BC$ such that $IL \perp IK$.Prove that $OK=3R$.

6

Find all functions $f : \mathbb{Z}\rightarrow \mathbb{Z}$ satisfying \[f^{a^{2} + b^{2}}(a+b) = af(a) +bf(b)\]for all integers $a$ and $b$

Day III

7

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

8

The Fibonacci numbers $F_0, F_1, F_2, . . .$ are defined inductively by $F_0=0, F_1=1$, and $F_{n+1}=F_n+F_{n-1}$ for $n \ge 1$. Given an integer $n \ge 2$, determine the smallest size of a set $S$ of integers such that for every $k=2, 3, . . . , n$ there exist some $x, y \in S$ such that $x-y=F_k$. Proposed by Croatia

9

Quote: For a positive integer $n$, let $d(n)$ be the number of positive divisors of $n$, and let $\varphi(n)$ be the number of positive integers not exceeding $n$ which are coprime to $n$. Prove that for any number $C$ , there exist an integer $n$ for which $$ \frac {\varphi ( d(n))}{d(\varphi(n))}> C$$ thisvariation was used in Saudi Arabia IMO TST

Day IV

10

Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$. South Africa

11

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$Israel

12

Let $p$ be an odd prime, and put $N=\frac{1}{4} (p^3 -p) -1.$ The numbers $1,2, \dots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N,$ denote $r(n)$ the fraction of integers $\{ 1,2, \dots, n \}$ that are red. Prove that there exists a positive integer $a \in \{ 1,2, \dots, p-1\}$ such that $r(n) \neq a/p$ for all $n = 1,2, \dots , N.$ Netherlands