Let $n$ ($n \ge 1$) be an integer. Consider the equation $2\cdot \lfloor{\frac{1}{2x}}\rfloor - n + 1 = (n + 1)(1 - nx)$, where $x$ is the unknown real variable. (a) Solve the equation for $n = 8$. (b) Prove that there exists an integer $n$ for which the equation has at least $2021$ solutions. (For any real number $y$ by $\lfloor{y} \rfloor$ we denote the largest integer $m$ such that $m \le y$.)
2021 Junior Balkаn Mathematical Olympiad
For any set $A = \{x_1, x_2, x_3, x_4, x_5\}$ of five distinct positive integers denote by $S_A$ the sum of its elements, and denote by $T_A$ the number of triples $(i, j, k)$ with $1 \le i < j < k \le 5$ for which $x_i + x_j + x_k$ divides $S_A$. Find the largest possible value of $T_A$.
Let $ABC$ be an acute scalene triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to the side $BC$. The lines $BC$ and $AO$ intersect at $E$. Let $s$ be the line through $E$ perpendicular to $AO$. The line $s$ intersects $AB$ and $AC$ at $K$ and $L$, respectively. Denote by $\omega$ the circumcircle of triangle $AKL$. Line $AD$ intersects $\omega$ again at $X$. Prove that $\omega$ and the circumcircles of triangles $ABC$ and $DEX$ have a common point.
Let $M$ be a subset of the set of $2021$ integers $\{1, 2, 3, ..., 2021\}$ such that for any three elements (not necessarily distinct) $a, b, c$ of $M$ we have $|a + b - c | > 10$. Determine the largest possible number of elements of $M$.