The incircle of a non-isosceles triangle $ABC$ with the center $I$ touches the sides $ BC, CA, AB$ at $ A_1 , B_1 , C_1 $ respectively. The line $AI$ meets the circumcircle of $ABC$ at $A_2 $. The line $B_1 C_1 $ meets the line $BC$ at $A_3 $ and the line $A_2 A_3 $ meets the circumcircle of $ABC$ at $A_4 (\ne A_2 ) $. Define $B_4 , C_4 $ similarly. Prove that the lines $ AA_4 , BB_4 , CC_4 $ are concurrent.
2013 North Korea Team Selection Test
Let $ a_1 , a_2 , \cdots , a_k $ be numbers such that $ a_i \in \{ 0,1,2,3 \} ( i= 1, 2, \cdots ,k) $. Let $ z = ( x_k , x_{k-1} , \cdots , x_1 )_4 $ be a base 4 expansion of $ z \in \{ 0, 1, 2, \cdots , 4^k -1 \} $. Define $ A $ as follows: \[ A = \{ z | p(z)=z, z=0, 1, \cdots ,4^k-1 \}\] where \[ p(z) = \sum_{i=1}^{k} a_i x_i 4^{i-1} . \] Prove that the number of elements in $ X $ is a power of 2.
Find all $ a, b, c \in \mathbb{Z} $, $ c \ge 0 $ such that $ a^n + 2^n | b^n + c $ for all positive integers $ n $ where $ 2ab $ is non-square.
Positive integers 1 to 9 are written in each square of a $ 3 \times 3 $ table. Let us define an operation as follows: Take an arbitrary row or column and replace these numbers $ a, b, c$ with either non-negative numbers $ a-x, b-x, c+x $ or $ a+x, b-x, c-x$, where $ x $ is a positive number and can vary in each operation. (1) Does there exist a series of operations such that all 9 numbers turn out to be equal from the following initial arrangement a)? b)? \[ a) \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} )\] \[ b) \begin{array}{ccc} 2 & 8 & 5 \\ 9 & 3 & 4 \\ 6 & 7 & 1 \end{array} )\] (2) Determine the maximum value which all 9 numbers turn out to be equal to after some steps.
The incircle $ \omega $ of a quadrilateral $ ABCD $ touches $ AB, BC, CD, DA $ at $ E, F, G, H $, respectively. Choose an arbitrary point $ X$ on the segment $ AC $ inside $ \omega $. The segments $ XB, XD $ meet $ \omega $ at $ I, J $ respectively. Prove that $ FJ, IG, AC $ are concurrent.
Show that $ x^3 + x+ a^2 = y^2 $ has at least one pair of positive integer solution $ (x,y) $ for each positive integer $ a $.