2021 Poland - Second Round

Day 1

1

Jacek has $n$ cards numbered consecutively with the numbers $1,. . . , n$, which he places in a row on the table, in any order he chooses. Jacek will remove cards from the table in the sequence consistent with the numbering of cards: first they will remove the card number $1$, then the card number $2$, and so on. Before Jacek starts taking the cards, Pie will color each one of cards in red, blue or yellow. Prove that Pie can color the cards in such a way that when Jacek takes them off, it will be fulfilled at every moment the following condition: between any two cards of the same suit there is at least one card of a different color.

2

The point P lies on the side $CD$ of the parallelogram $ABCD$ with $\angle DBA = \angle CBP$. Point $O$ is the center of the circle passing through the points $D$ and $P$ and tangent to the straight line $AD$ at point $D$. Prove that $AO = OC$.

3

Positive integers $a,b,z$ satisfy the equation $ab=z^2+1$. Prove that there exist positive integers $x,y$ such that $$\frac{a}{b}=\frac{x^2+1}{y^2+1}$$

Day 2

4

There are real numbers $x, y$ such that $x \ne 0$, $y \ne 0$, $xy + 1 \ne 0$ and $x + y \ne 0$. Suppose the numbers $x + \frac{1}{x} + y + \frac{1}{y}$ and $x^3+\frac{1}{x^3} + y^3 + \frac{1}{y^3}$ are rational. Prove that then the number $x^2+\frac{1}{x^2} + y^2 + \frac{1}{y^2}$ is also rational.

5

Find the largest positive integer $n$ with the following property: there are rectangles $A_1, ... , A_n$ and $B_1,... , B_n,$ on the plane , each with sides parallel to the axis of the coordinate system, such that the rectangles $A_i$ and $B_i$ are disjoint for all $i \in \{1,..., n\}$, but the rectangles $A_i$ and $B_j$ have a common point for all $i, j \in \{1,..., n\}$, $i \ne j$. Note: By points belonging to a rectangle we mean all points lying either in its interior, or on any of its sides, including its vertices

6

Let $p\ge 5$ be a prime number. Consider the function given by the formula $$f (x_1,..., x_p) = x_1 + 2x_2 +... + px_p.$$Let $A_k$ denote the set of all these permutations $(a_1,..., a_p)$ of the set $\{1,..., p\}$, for integer number $f (a_1,..., a_p) - k$ is divisible by $p$ and $a_i \ne i$ for all $i \in \{1,..., p\}$. Prove that the sets $A_1$ and $A_4$ have the same number of elements.