Let $C_1$ and $C_2$ be two concentric circles with $C_1$ inside $C_2$. Let $P_1$ and $P_2$ be two points on $C_1$ that are not diametrically opposite. Extend the segment $P_1P_2$ past $P_2$ until it meets the circle $C_2$ in $Q_2$. The tangent to $C_2$ at $Q_2$ and the tangent to $C_1$ at $P_1$ meet in a point $X$. Draw from X the second tangent to $C_2$ which meets $C_2$ at the point $Q_1$. Show that $P_1X$ bisects angle $Q_1P_1Q_2$.
2021 Canadian Junior Mathematical Olympiad
How many ways are there to permute the first $n$ positive integers such that in the permutation, for each value of $k \le n$, the first $k$ elements of the permutation have distinct remainder mod $k$?
those were also CMO problems
Let $ABCD$ be a trapezoid with $AB$ parallel to $CD$, $|AB|>|CD|$, and equal edges $|AD|=|BC|$. Let $I$ be the center of the circle tangent to lines $AB$, $AC$ and $BD$, where $A$ and $I$ are on opposite sides of $BD$. Let $J$ be the center of the circle tangent to lines $CD$, $AC$ and $BD$, where $D$ and $J$ are on opposite sides of $AC$. Prove that $|IC|=|JB|$.
Let $n\geq 2$ be some fixed positive integer and suppose that $a_1, a_2,\dots,a_n$ are positive real numbers satisfying $a_1+a_2+\cdots+a_n=2^n-1$. Find the minimum possible value of $$\frac{a_1}{1}+\frac{a_2}{1+a_1}+\frac{a_3}{1+a_1+a_2}+\cdots+\frac{a_n}{1+a_1+a_2+\cdots+a_{n-1}}$$
A function $f$ from the positive integers to the positive integers is called Canadian if it satisfies $$\gcd\left(f(f(x)), f(x+y)\right)=\gcd(x, y)$$for all pairs of positive integers $x$ and $y$. Find all positive integers $m$ such that $f(m)=m$ for all Canadian functions $f$.