Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$Israel
2021 Taiwan TST Round 1
Quiz 1
Let $n$ and $k$ be positive integers satisfying $k\leq2n^2$. Lee and Sunny play a game with a $2n\times2n$ grid paper. First, Lee writes a non-negative real number no greater than $1$ in each of the cells, so that the sum of all numbers on the paper is $k$. Then, Sunny divides the paper into few pieces such that each piece is constructed by several complete and connected cells, and the sum of all numbers on each piece is at most $1$. There are no restrictions on the shape of each piece. (Cells are connected if they share a common edge.) Let $M$ be the number of pieces. Lee wants to maximize $M$, while Sunny wants to minimize $M$. Find the value of $M$ when Lee and Sunny both play optimally.
In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\](A disk is assumed to contain its boundary.)
For each positive integer $n$, define $V_n=\lfloor 2^n\sqrt{2020}\rfloor+\lfloor 2^n\sqrt{2021}\rfloor$. Prove that, in the sequence $V_1,V_2,\ldots,$ there are infinitely many odd integers, as well as infinitely many even integers. Remark. $\lfloor x\rfloor$ is the largest integer that does not exceed the real number $x$.
Quiz 2
Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*}with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.
Let $n$ be a positive integer. Find the number of permutations $a_1$, $a_2$, $\dots a_n$ of the sequence $1$, $2$, $\dots$ , $n$ satisfying $$a_1 \le 2a_2\le 3a_3 \le \dots \le na_n$$. Proposed by United Kingdom
Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Omega$. A point $X$ on $\Omega$ which is different from $A$ satisfies $AI=XI$. The incircle touches $AC$ and $AB$ at $E, F$, respectively. Let $M_a, M_b, M_c$ be the midpoints of sides $BC, CA, AB$, respectively. Let $T$ be the intersection of the lines $M_bF$ and $M_cE$. Suppose that $AT$ intersects $\Omega$ again at a point $S$. Prove that $X, M_a, S, T$ are concyclic. Proposed by ltf0501 and Li4
Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$. South Africa
Mock IMO, Day 1
There are $110$ guinea pigs for each of the $110$ species, arranging as a $110\times 110$ array. Find the maximum integer $n$ such that, no matter how the guinea pigs align, we can always find a column or a row of $110$ guinea pigs containing at least $n$ different species.
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other. $\emph{Slovakia}$
Find all triples $(x, y, z)$ of positive integers such that \[x^2 + 4^y = 5^z. \] Proposed by Li4 and ltf0501
Mock IMO, Day 2
Let $n$ be a positive integer. For each $4n$-tuple of nonnegative real numbers $a_1,\ldots,a_{2n}$, $b_1,\ldots,b_{2n}$ that satisfy $\sum_{i=1}^{2n}a_i=\sum_{j=1}^{2n}b_j=n$, define the sets \[A:=\left\{\sum_{j=1}^{2n}\frac{a_ib_j}{a_ib_j+1}:i\in\{1,\ldots,2n\} \textup{ s.t. }\sum_{j=1}^{2n}\frac{a_ib_j}{a_ib_j+1}\neq 0\right\},\]\[B:=\left\{\sum_{i=1}^{2n}\frac{a_ib_j}{a_ib_j+1}:j\in\{1,\ldots,2n\} \textup{ s.t. }\sum_{i=1}^{2n}\frac{a_ib_j}{a_ib_j+1}\neq 0\right\}.\]Let $m$ be the minimum element of $A\cup B$. Determine the maximum value of $m$ among those derived from all such $4n$-tuples $a_1,\ldots,a_{2n},b_1,\ldots,b_{2n}$. Proposed by usjl.
For each prime $p$, construct a graph $G_p$ on $\{1,2,\ldots p\}$, where $m\neq n$ are adjacent if and only if $p$ divides $(m^{2} + 1-n)(n^{2} + 1-m)$. Prove that $G_p$ is disconnected for infinitely many $p$
Let $n$ be a positive integer and $N=n^{2021}$. There are $2021$ concentric circles centered at $O$, and $N$ equally-spaced rays are emitted from point $O$. Among the $2021N$ intersections of the circles and the rays, some are painted red while the others remain unpainted. It is known that, no matter how one intersection point from each circle is chosen, there is an angle $\theta$ such that after a rotation of $\theta$ with respect to $O$, all chosen points are moved to red points. Prove that the minimum number of red points is $2021n^{2020}$. Proposed by usjl.