2021 China Team Selection Test

Day 1 - Test 1

1

Given positive integers $m$ and $n$. Let $a_{i,j} ( 1 \le i \le m, 1 \le j \le n)$ be non-negative real numbers, such that $$ a_{i,1} \ge a_{i,2} \ge \cdots \ge a_{i,n} \text{ and } a_{1,j} \ge a_{2,j} \ge \cdots \ge a_{m,j} $$holds for all $1 \le i \le m$ and $1 \le j \le n$. Denote $$ X_{i,j}=a_{1,j}+\cdots+a_{i-1,j}+a_{i,j}+a_{i,j-1}+\cdots+a_{i,1},$$$$ Y_{i,j}=a_{m,j}+\cdots+a_{i+1,j}+a_{i,j}+a_{i,j+1}+\cdots+a_{i,n}.$$Prove that $$ \prod_{i=1}^{m} \prod_{j=1}^{n} X_{i,j} \ge \prod_{i=1}^{m} \prod_{j=1}^{n} Y_{i,j}.$$

2

Given positive integers $n$ and $k$, $n > k^2 >4.$ In a $n \times n$ grid, a $k$-group is a set of $k$ unit squares lying in different rows and different columns. Determine the maximal possible $N$, such that one can choose $N$ unit squares in the grid and color them, with the following condition holds: in any $k$-group from the colored $N$ unit squares, there are two squares with the same color, and there are also two squares with different colors.

3

Given positive integer $n$. Prove that for any integers $a_1,a_2,\cdots,a_n,$ at least $\lceil \tfrac{n(n-6)}{19} \rceil$ numbers from the set $\{ 1,2, \cdots, \tfrac{n(n-1)}{2} \}$ cannot be represented as $a_i-a_j (1 \le i, j \le n)$.

Day 2 - Test 1

4

Let $f(x),g(x)$ be two polynomials with integer coefficients. It is known that for infinitely many prime $p$, there exist integer $m_p$ such that $$f(a) \equiv g(a+m_p) \pmod p$$holds for all $a \in \mathbb{Z}.$ Prove that there exists a rational number $r$ such that $$f(x)=g(x+r).$$

5

Given a triangle $ABC$, a circle $\Omega$ is tangent to $AB,AC$ at $B,C,$ respectively. Point $D$ is the midpoint of $AC$, $O$ is the circumcenter of triangle $ABC$. A circle $\Gamma$ passing through $A,C$ intersects the minor arc $BC$ on $\Omega$ at $P$, and intersects $AB$ at $Q$. It is known that the midpoint $R$ of minor arc $PQ$ satisfies that $CR \perp AB$. Ray $PQ$ intersects line $AC$ at $L$, $M$ is the midpoint of $AL$, $N$ is the midpoint of $DR$, and $X$ is the projection of $M$ onto $ON$. Prove that the circumcircle of triangle $DNX$ passes through the center of $\Gamma$.

6

Given positive integer $n$ and $r$ pairwise distinct primes $p_1,p_2,\cdots,p_r.$ Initially, there are $(n+1)^r$ numbers written on the blackboard: $p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} (0 \le i_1,i_2,\cdots,i_r \le n).$ Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers $a,b$ (not necessarily different) and write $\gcd(a,b)$. In Bob's round, he erases two numbers $a,b$ (not necessarily different) and write $\mathrm{lcm} (a,b)$. The game ends when only one number remains on the blackboard. Determine the minimal possible $M$ such that Alice could guarantee the remaining number no greater than $M$, regardless of Bob's move.

Day 1 - Test 2

1

A cyclic quadrilateral $ABCD$ has circumcircle $\Gamma$, and $AB+BC=AD+DC$. Let $E$ be the midpoint of arc $BCD$, and $F (\neq C)$ be the antipode of $A$ wrt $\Gamma$. Let $I,J,K$ be the incenter of $\triangle ABC$, the $A$-excenter of $\triangle ABC$, the incenter of $\triangle BCD$, respectively. Suppose that a point $P$ satisfies $\triangle BIC \stackrel{+}{\sim} \triangle KPJ$. Prove that $EK$ and $PF$ intersect on $\Gamma.$

2

Given positive integers $n,k$, $n \ge 2$. Find the minimum constant $c$ satisfies the following assertion: For any positive integer $m$ and a $kn$-regular graph $G$ with $m$ vertices, one could color the vertices of $G$ with $n$ different colors, such that the number of monochrome edges is at most $cm$.

3

Given positive integers $a,b,c$ which are pairwise coprime. Let $f(n)$ denotes the number of the non-negative integer solution $(x,y,z)$ to the equation $$ax+by+cz=n.$$Prove that there exists constants $\alpha, \beta, \gamma \in \mathbb{R}$ such that for any non-negative integer $n$, $$|f(n)- \left( \alpha n^2+ \beta n + \gamma \right) | < \frac{1}{12} \left( a+b+c \right).$$

Day 2 - Test 2

4

Find all functions $f: \mathbb{Z}^+\rightarrow \mathbb{Z}^+$ such that for all positive integers $m,n$ with $m\ge n$, $$f(m\varphi(n^3)) = f(m)\cdot \varphi(n^3).$$Here $\varphi(n)$ denotes the number of positive integers coprime to $n$ and not exceeding $n$.

5

Let $n$ be a positive integer and $a_1,a_2,\ldots a_{2n+1}$ be positive reals. For $k=1,2,\ldots ,2n+1$, denote $b_k = \max_{0\le m\le n}\left(\frac{1}{2m+1} \sum_{i=k-m}^{k+m} a_i \right)$, where indices are taken modulo $2n+1$. Prove that the number of indices $k$ satisfying $b_k\ge 1$ does not exceed $2\sum_{i=1}^{2n+1} a_i$.

6

Find the smallest positive real constant $a$, such that for any three points $A,B,C$ on the unit circle, there exists an equilateral triangle $PQR$ with side length $a$ such that all of $A,B,C$ lie on the interior or boundary of $\triangle PQR$.

Day 1 - Test 3

1

Given positive integer $ n \ge 5 $ and a convex polygon $P$, namely $ A_1A_2...A_n $. No diagonals of $P$ are concurrent. Proof that it is possible to choose a point inside every quadrilateral $ A_iA_jA_kA_l (1\le i<j<k<l\le n) $ not on diagonals of $P$, such that the $ \tbinom{n}{4} $ points chosen are distinct, and any segment connecting these points intersect with some diagonal of P.

2

Given distinct positive integer $ a_1,a_2,…,a_{2020} $. For $ n \ge 2021 $, $a_n$ is the smallest number different from $a_1,a_2,…,a_{n-1}$ which doesn't divide $a_{n-2020}...a_{n-2}a_{n-1}$. Proof that every number large enough appears in the sequence.

3

Determine the greatest real number $ C $, such that for every positive integer $ n\ge 2 $, there exists $ x_1, x_2,..., x_n \in [-1,1]$, so that $$\prod_{1\le i<j\le n}(x_i-x_j) \ge C^{\frac{n(n-1)}{2}}$$.

Day 2

4

Proof that $$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$

5

Determine all $ f:R\rightarrow R $ such that $$ f(xf(y)+y^3)=yf(x)+f(y)^3 $$

6

Proof that there exist constant $\lambda$, so that for any positive integer $m(\ge 2)$, and any lattice triangle $T$ in the Cartesian coordinate plane, if $T$ contains exactly one $m$-lattice point in its interior(not containing boundary), then $T$ has area $\le \lambda m^3$. PS. lattice triangles are triangles whose vertex are lattice points; $m$-lattice points are lattice points whose both coordinates are divisible by $m$.

Day 1 - Test 4

1

Let $ n(\ge2) $ be a positive integer. Find the minimum $ m $, so that there exists $x_{ij}(1\le i ,j\le n)$ satisfying: (1)For every $1\le i ,j\le n, x_{ij}=max\{x_{i1},x_{i2},...,x_{ij}\} $ or $ x_{ij}=max\{x_{1j},x_{2j},...,x_{ij}\}.$ (2)For every $1\le i \le n$, there are at most $m$ indices $k$ with $x_{ik}=max\{x_{i1},x_{i2},...,x_{ik}\}.$ (3)For every $1\le j \le n$, there are at most $m$ indices $k$ with $x_{kj}=max\{x_{1j},x_{2j},...,x_{kj}\}.$

2

Let triangle$ABC(AB<AC)$ with incenter $I$ circumscribed in $\odot O$. Let $M,N$ be midpoint of arc $\widehat{BAC}$ and $\widehat{BC}$, respectively. $D$ lies on $\odot O$ so that $AD//BC$, and $E$ is tangency point of $A$-excircle of $\bigtriangleup ABC$. Point $F$ is in $\bigtriangleup ABC$ so that $FI//BC$ and $\angle BAF=\angle EAC$. Extend $NF$ to meet $\odot O$ at $G$, and extend $AG$ to meet line $IF$ at L. Let line $AF$ and $DI$ meet at $K$. Proof that $ML\bot NK$.

3

Find all positive integer $n(\ge 2)$ and rational $\beta \in (0,1)$ satisfying the following: There exist positive integers $a_1,a_2,...,a_n$, such that for any set $I \subseteq \{1,2,...,n\}$ which contains at least two elements, $$ S(\sum_{i\in I}a_i)=\beta \sum_{i\in I}S(a_i). $$where $S(n)$ denotes sum of digits of decimal representation of $n$.

Day 2

4

Suppose $x_1,x_2,...,x_{60}\in [-1,1]$ , find the maximum of $$ \sum_{i=1}^{60}x_i^2(x_{i+1}-x_{i-1}),$$where $x_{i+60}=x_i$.

5

Find the smallest real $\alpha$, such that for any convex polygon $P$ with area $1$, there exist a point $M$ in the plane, such that the area of convex hull of $P\cup Q$ is at most $\alpha$, where $Q$ denotes the image of $P$ under central symmetry with respect to $M$.

6

Let $n(\ge 2)$ be an integer. $2n^2$ contestants participate in a Chinese chess competition, where any two contestant play exactly once. There may be draws. It is known that (1)If A wins B and B wins C, then A wins C. (2)there are at most $\frac{n^3}{16}$ draws. Proof that it is possible to choose $n^2$ contestants and label them $P_{ij}(1\le i,j\le n)$, so that for any $i,j,i',j'\in \{1,2,...,n\}$, if $i<i'$, then $P_{ij}$ wins $P_{i'j'}$.