Let $A, B, C, D, E$ be five distinct points on a circle $\Gamma$ in the clockwise order and let the extensions of $CD$ and $AE$ meet at a point $Y$ outside $\Gamma$. Suppose $X$ is a point on the extension of $AC$ such that $XB$ is tangent to $\Gamma$ at $B$. Prove that $XY = XB$ if and only if $XY$ is parallel $DE$.
2002 Singapore Team Selection Test
Day 1
Let $n$ be a positive integer and $(x_1, x_2, ..., x_{2n})$, $x_i = 0$ or $1, i = 1, 2, ... , 2n$ be a sequence of $2n$ integers. Let $S_n$ be the sum $S_n = x_1x_2 + x_3x_4 + ... + x_{2n-1}x_{2n}$. If $O_n$ is the number of sequences such that $S_n$ is odd and $E_n$ is the number of sequences such that $S_n$ is even, prove that $$\frac{O_n}{E_n}=\frac{2^n - 1}{2^n + 1}$$
For every positive integer $n$, show that there is a positive integer $k$ such that $2k^2 + 2001k + 3 \equiv 0$ (mod $2^n$).
Day 2
Let $x_1, x_2, x_3$ be positive real numbers. Prove that $$\frac{(x_1^2+x_2^2+x_3^2)^3}{(x_1^3+x_2^3+x_3^3)^2}\le 3$$
For each real number $x$, $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$. For example $\lfloor 2.8 \rfloor = 2$. Let $r \ge 0$ be a real number such that for all integers $m, n, m|n$ implies $\lfloor mr \rfloor| \lfloor nr \rfloor$. Prove that $r$ is an integer.
Find all functions $f : [0,\infty) \to [0,\infty)$ such that $f(f(x)) +f(x) = 12x$, for all $x \ge 0$.