Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.
2008 Indonesia TST
Stage 2
Day 1
Find all functions $f : R \to R$ that satisfies the condition $$f(f(x - y)) = f(x)f(y) - f(x) + f(y) - xy$$for all real numbers $x, y$.
$10$ people attended a party. For every $3$ people, there exist at least $2$ people who don’t know each other. Prove that there exist $4$ people who don’t know each other.
Let $ a $ and $ b $ be natural numbers with property $ gcd(a,b)=1 $ . Find the least natural number $ k $ such that for every natural number $ r \ge k $ , there exist natural numbers $ m,n >1 $ in such a way that the number $ m^a n^b $ has exactly $ r+1 $ positive divisors.
Day 2
A polynomial $P(x) = 1 + x^2 + x^5 + x^{n_1} + ...+ x^{n_s} + x^{2008}$ with $n_1, ..., n_s$ are positive integers and $5 < n_1 < ... <n_s < 2008$ are given. Prove that if $P(x)$ has at least a real root, then the root is not greater than $\frac{1-\sqrt5}{2}$
Find all positive integers $1 \le n \le 2008$ so that there exist a prime number $p \ge n$ such that $$\frac{2008^p + (n -1)!}{n}$$is a positive integer.
Let $\Gamma_1$ and $\Gamma_2$ be two circles that tangents each other at point $N$, with $\Gamma_2$ located inside $\Gamma_1$. Let $A, B, C$ be distinct points on $\Gamma_1$ such that $AB$ and $AC$ tangents $\Gamma_2$ at $D$ and $E$, respectively. Line $ND$ cuts $\Gamma_1$ again at $K$, and line $CK$ intersects line $DE$ at $I$. (i) Prove that $CK$ is the angle bisector of $\angle ACB$. (ii) Prove that $IECN$ and $IBDN$ are cyclic quadrilaterals.
There are $15$ people, including Petruk, Gareng, and Bagong, which will be partitioned into $6$ groups, randomly, that consists of $3, 3, 3, 2, 2$, and $2$ people (orders are ignored). Determine the probability that Petruk, Gareng, and Bagong are in a group.
Day 3
Let $ABCD$ be a cyclic quadrilateral, and angle bisectors of $\angle BAD$ and $\angle BCD$ meet at point $I$. Show that if $\angle BIC = \angle IDC$, then $I$ is the incenter of triangle $ABD$.
Let $S = \{1, 2, 3, ..., 100\}$ and $P$ is the collection of all subset $T$ of $S$ that have $49$ elements, or in other words: $$P = \{T \subset S : |T| = 49\}.$$Every element of $P$ is labelled by the element of $S$ randomly (the labels may be the same). Show that there exist subset $M$ of $S$ that has $50$ members such that for every $x \in M$, the label of $M -\{x\}$ is not equal to $x$
Let $n$ be an arbitrary positive integer. (a) For every positive integers $a$ and $b$, show that $gcd(n^a + 1, n^b + 1) \le n^{gcd(a,b)} + 1$. (b) Show that there exist infinitely many composite pairs ($a, b)$, such that each of them is not a multiply of the other number and equality holds in (a).
Let $a, b, c$ be positive reals. Prove that $$\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge \frac34$$
Day 4
Let $A$ be the subset of $\{1, 2, ..., 16\}$ that has $6$ elements. Prove that there exist $2$ subsets of $A$ that are disjoint, and the sum of their elements are the same.
Let $\{a_n\}_{n \in N}$ be a sequence of real numbers with $a_1 = 2$ and $a_n =\frac{n^2 + 1}{\sqrt{n^3 - 2n^2 + n}}$ for all positive integers $n \ge 2$. Let $s_n = a_1 + a_2 + ...+ a_n$ for all positive integers $n$. Prove that $$\frac{1}{s_1s_2}+\frac{1}{s_2s_3}+ ...+\frac{1}{s_ns_{n+1}}<\frac15$$for all positive integers $n$.
Let $ABCD$ be a convex quadrilateral with $AB$ is not parallel to $CD$ Circle $\Gamma_{1}$ with center $O_1$ passes through $A$ and $B$, and touches segment $CD$ at $P$. Circle $\Gamma_{2}$ with center $O_2$ passes through $C$ and $D$, and touches segment $AB$ at $Q$. Let $E$ and $F$ be the intersection of circles $\Gamma_{1}$ and $\Gamma_{2}$. Prove that $EF$ bisects segment $PQ$ if and only if $BC$ is parallel to $AD$.
Find all pairs of positive integer $\alpha$ and function $f : N \to N_0$ that satisfies (i) $f(mn^2) = f(mn) + \alpha f(n)$ for all positive integers $m, n$. (ii) If $n$ is a positive integer and $p$ is a prime number with $p|n$, then $f(p) \ne 0$ and $f(p)|f(n)$.