Let $R_+=(0,+\infty)$. Find all functions $f: R_+ \to R_+$ such that $f(xf(y))+f(yf(z))+f(zf(x))=xy+yz+zx$, for all $x,y,z \in R_+$. by Athanasios Kontogeorgis (aka socrates)
2020 Greece Team Selection Test
Given a triangle $ABC$ inscribed in circle $c(O,R)$ (with center $O$ and radius $R$) with $AB<AC<BC$ and let $BD$ be a diameter of the circle $c$. The perpendicular bisector of $BD$ intersects line $AC$ at point $M$ and line $AB$ at point $N$. Line $ND$ intersects the circle $c$ at point $T$. Let $S$ be the second intersection point of cicumcircles $c_1$ of triangle $OCM$, and $c_2$ of triangle $OAD$. Prove that lines $AD, CT$ and $OS$ pass through the same point.
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\]for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\]is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) Russia