Problem

Source:

Tags: arithmetic sequence, Miscellaneous Problems



The set $S=\{ \frac{1}{n} \; \vert \; n \in \mathbb{N} \}$ contains arithmetic progressions of various lengths. For instance, $\frac{1}{20}$, $\frac{1}{8}$, $\frac{1}{5}$ is such a progression of length $3$ and common difference $\frac{3}{40}$. Moreover, this is a maximal progression in $S$ since it cannot be extended to the left or the right within $S$ ($\frac{11}{40}$ and $\frac{-1}{40}$ not being members of $S$). Prove that for all $n \in \mathbb{N}$, there exists a maximal arithmetic progression of length $n$ in $S$.