Problem

Source:

Tags: Euler, modular arithmetic, geometry, geometric transformation, rotation, More Sequences



An integer sequence $\{a_{n}\}_{n \ge 1}$ is given such that \[2^{n}=\sum^{}_{d \vert n}a_{d}\] for all $n \in \mathbb{N}$. Show that $a_{n}$ is divisible by $n$ for all $n \in \mathbb{N}$.